ISRAEL JOURNAL OF MATHEMATICS, Vol. 47, No. I, 1984

A NEW LOOK AT BERGSTROM’S THEOREM
ON CONVERGENCE IN DISTRIBUTION FOR
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ABSTRACT

In his 1972 Periodica Mathematica Hungarica paper, H. Bergstrom stated a
theorem on convergence in distribution for triangular arrays of dependent
random variables satisfying a ¢-mixing condition. A gap in his proof of this
theorem is explained and a more general version is proved under weakened
hypotheses. The method used consists of comparisons between the given array
and associated arrays which are parameterized by a truncation variable. In
addition to the main theorem, this method yields a proof of equality of limiting
finite-dimensional distributions for processes generated by the given associated
arrays as well as the result that if a limit distribution for the centered row sums
does exist, it must be infinitely divisible. Several corollaries to the main theorem
specialize this result for convergence to distributions within certain subclasses of
the infinitely divisible laws.

1. Imtroduction

In the early 1970’s, H. Bergstrdm [1-3] wrote a series of papers concerning
comparison methods for convergence in distribution of row sums of triangular
arrays of dependent random variables. In [1] and [3], the basic idea was to
approximate the row sums by suitable partial sums, with gaps determined by a
partition of the row index, and then compare these partial sums with associated
ones formed from independent summands. However, in [2] the comparison
method was quite different and consisted of approximating the given array by an
array in which each row is the sum of two independent vectors, the first one
Gaussian and the second with independent components.

The major theorem of [2] states that for triangular arrays of dependent
random variables, satisfying a ¢-mixing condition with specified decay rate and
certain other preliminary conditions, the joint fulfilment of three limit relations
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is both necessary and sufficient for the convergence in distribution of the row
sums of such an array to an infinitely divisible law. These three relations are
essentially the same as those in the classical case of triangular arrays having
independence within each row (see [5]). A close examination of Bergstrom’s
paper reveals that the proof as given there will go through only in the event that
each row of the array is part of a stationary sequence. Nevertheless, the theorem
is true as stated and the proof can be corrected to demonstrate the validity of the
result. In fact, not only is the theorem true but it can be improved, as can some of
the key propositions leading up to it. Furthermore, the nature of the preliminary
conditions can be clarified and, consequently, these conditions can be weakened.

2. Definitions and notation

We consider triangular arrays {X,,}, where for each positive integer n the
random variables X, ; j=1,2,---,k(n), are defined on the same probability
space and {k(n)} is a non-decreasing unbounded sequence of positive integers. If
I(A) denotes the indicator function of the event A and ¢ >0, we define

X.i(e) = Xl (]| X..; | = €}),
2.1) X.i(e) = Xy — Xoi(e)
and

Mni(€) = E(X,.,,—(e)) = (%001 XidP.

{X.,;} satisfies the weak dependency condition known as ¢-mixing if and only
if the mixing coefficient ¢(n, k), defined for k=1,2,--- k(n)—1, n=
1,2,3,- - -, to be the supremum of | P(A N B)— P(A)P(B)|/P(A) taken over all
events A and B such that for some j, 1=j<j+k=k(n),
AERB(X.1, *, Xn;), P(A)>0,and B € B(X.. 4k, " - *, Xukmy), has the property
that

(2.2 lim lim sup ¢ (n, k)=0.

This mixing coefficient satisfies the decay rate known as Ibragimov’s condition
[6] if and only if

(2.3) lim lim sup Z) [é(n, ))=0.

We next consider conditions on truncated versions of {X,;} which are related
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to the question of convergence in distribution, for suitable constants A,, of the
sums

We list six such conditions here, although another appears in Section 7.

uan(e): lim max P{|X.;|>¢})=0.

n—x I1sjsk(n)

k(n)
stb(e): limsup >, P({| X..;|> e}) <.
n-—»xc j=1

k(n)

smb(g): limsup Z | nj (£)] < 00,

ssb(g): limsup ,ﬁ) E(X.;(e)P) <.

k{n)

svb(g): limsup 2 var(X.,; ()) < .
n—voo i=1

k(n)~k
sjn(e): lim i P{| X.;|> &,| X.j+x | > €}) =0 for every positive integer k.
n—ex i=l

We say that {X,;} is uniformly asymptotically negligible, uan, if and only if
uan (¢) is satisfied for every & >0. Similarly, we can define: sums of tail
probabilities bounded, stb; sums of absolute values of means bounded, smb;
sums of second moments bounded, ssb; sums of variances bounded, svb; and
sums of joint tail probabilities asymptotically negligible, sjn.

In the case that for each n, the random variables X..;, j = 1,2, - -, k(n), are
independent, the basic assumption made in many theorems concerning con-
vergence in distribution of the sums {S.} is that {X,;} satisfies uan. If this
condition is satisfied in the independent case and, in fact, the sums {S,} do
converge in distribution, then it turns out that {X.;} must satisfy stb and svb.
Furthermore, in the case of independence, uan and stb imply that sjn is satisfied
as well. In summary, it turns out that for independent uan random variables, stb,
svb, and sjn are necessary conditions for convergence in distribution of the sums
{S.}.

If ¢** is the characteristic function of an infinitely divisible distribution, then

2.4 Y(v)=ivy -0’0’2 +I [e™ —1—iuv/(1+ u*)dQ(u),

{lu]>0}
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where —o <y <w®, ¢’=0, and Q is non-decreasing on (-, 0) and (0, ©) with
limu . Q) =0, and [io<puis.; u’dQ(u) <  for every & > 0. Thus for any & > 0.
we can write

(2.5) Y)=ivy(e)—v’a?2+ J (e™ —1)dQ(u)

{lui>e}

+j (e™ —1—iuv)dQ(u),
{0<|u|=e€}

where

@8 ve)=v+|

{0<ju|=e}

w1+ u®)dOu) - I“ - u/(1+ u’)dQ(u).

Note that if Q is known and y(&.) is known for some &, > 0, then vy is known, as
is y(¢e) for all £ > 0. In fact we have, for 0< ¢ < g,

2.7 v(€o)— y(€) = udQ(u).

{e <|u|=eq}

3. Statements of results and methods of proof
MAIN THEOREM. Assume {X,;} satisfies the preliminary conditions: ¢-mixing
with coefficient fulfilling Ibragimov’s condition, uan, stb, svb, and sjn. Then

k(n)

Sn = ZX,;‘,'_A,,
=

converges in distribution as n— to the infinitely divisible law determined in the
form (2.4) by Q, v, and o? if and only if

k(n)

(i) lim >, P(X., > u})= — O(u)

whenever u >0 is a continuity point of Q, and

k(n)

lim 3 P(X.; <u})= Qu)

whenever u <0 is a continuity point of Q;
(ii) for some £,>0 such that * &, are continuity points of Q,

n—sx

lim [ :(2: Hnj(g0)— A,.] = y(&0);

and
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k(n)

. k(n) . N
(i) lim lim inf var( S X.(e )) = lim lim sup var( D X,.,,-(e)) =,
Pl Riales & el nowm &
when ¢ — 0 through positive real numbers such that =+ ¢ are continuity points of Q.

Observe that this theorem includes the classical result for independent uan
random variables, which states that (i), (ii), and (iii) are necessary and sufficient
for convergence in distribution of {S,} to the infinitely divisible law determined
by O, v, and o, without further preliminary conditions. We have already
mentioned the necessity of stb, svb, and sjn in the independent uan case and for
sufficiency it is enough to realize that (i) implies stb, (iii) and independence give
svb, and, as before, independence, uan, and stb yield sjn. In Bergstrom’s
theorem [2] only the case A. =0 is considered, the preliminary condition svb is
replaced by the stronger condition ssb, and the additional condition smb is
imposed. Bergstrom also states that o> 0, which eliminates the stable laws as
possible limits, but this restriction is certainly not needed.

In order to prove the theorem, we shall use the classical results in combination
with a modified version of the comparison method of Bergstrém. The compari-
son involves the given ¢-mixing array, centered at the truncated mean pw.;{),
and associated arrays parameterized by g, for 0 <¢ =g, These arrays are
constructed as follows: given 0 < ¢ = g, and a positive integer n,

(a) define }A’,.‘,-(e(,, €), j=1,2,---,k(n), to be a Gaussian random vector,
independent of the X,; and having the same mean vector and covariance matrix
as

[Xn,i - /J’nvi(g(’)]l({l Xn.i - ll«n,j(é‘o) I = 8})’ ] =1,2,--, k(n);

(b) let Y,;(g0,€), j =1,2, -+, k(n), be independent random variables, inde-
pendent of the Y,;(eo, £) and of the X,; as well, such that Y,;(&,, ) has the
same distribution as

[Xn‘i - /-Ln-i(EO)]I(“ Xn‘i - “'n.i(eo) ' > 8})’ ] =1,2,--, k(n);

(c) finally, let Y.;(go, €)= Yn;(80,8)+ Yuj(0,€), j = 1,2, -, k(n).

Our modifications to Bergstrom’s method can now be described. First of all,
we stick to Fourier analysis, i.e. characteristic functions, rather than using his
Gaussian transform. Secondly, we define the Gaussian parts of our associated
arrays without the changes in the covariance matrices that cause Bergstrom’s
proof to break down (see the end of Section 4). Thirdly, we compensate for use
of these unchanged covariance matrices by a slightly more delicate analysis of
the comparison between the given and the associated arrays.
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We can now state the propositions which combine to prove the main theorem.
Some of these go beyond the minimum needed for this theorem and hence have
interest in their own right. This is particularly true of the fundamental compari-
son proposition, Proposition A, which leads to equality of limiting finite-
dimensional distributions for processes generated by the given and associated
arrays. In addition, Proposition D shows that under the preliminary assumptions
of the main theorem, the only possible limit laws for the sums {S,} are, as in the
independent case, the infinitely divisible distributions.

ProrosiTioN A.  Let {X.;} satisfy the preliminary conditions of the main
theorem. For arbitrary e,>0, let Z.; = X.; — pn;(€0) and write Y.;(e) for
Y,.(g0, &), 0< ¢ =g, Let v ={v.;} denote an array of real constants and define

[vl=sup{lva]:j=1.2,--- k(n),n=1,2,3,---}
Finally, define

k(n) - k(n)
3.1) S(v,n,s)=E(exp[iz u,.,,zn,,]) <expl > by n,(s)D
=
Then for every V >0,

lim lim sup sup |S(v,n,€)|=0.
nr T folEv
Cororrary 1. Forn=1,2,3,---, let 8, be a continuous, strictly increasing
mapping of the interval [0, 1] onto itself. Define the processes U, (t) and T,(t, ¢) for
0=t=1 by

(ke ()] fk(n)e, )]

(3.2) U= 2 Zy and T.(te)= 2 Yule),

where, in this corollary (and its proof), {x] denotes the greatest integer not
exceeding x.

Then the finite dimensional distributions of {U.(t):0=t =1} converge as
n—x if and only if the finite dimensional distributions of {T.(t,e):0=t=1}
converge when n — x followed by € — (. In this case, the limiting distributions are
the same.

COROLLARY 2. 2%V Z,; converges in distribution as n—» if and only if
SV Y., (&) converges in distribution as n — o and then ¢ — 0. In this case, the

limiting distributions are the same.

CorOLLARY 3. S, =3/ X, — A, converges in distribution as n — « if and



38 H. A. KRIEGER Isr. J. Math.

only if X7 Y,;(e)+ 27 wn;(€0)— An converges in distribution as n —~ and
then € — 0. In this case, the limiting distributions are the same.

PROPOSITION B. Let {X.;} satisfy uan and condition (i) of the main theorem.
Let £0>0 with = ¢, continuity points of the function Q specified in (i). Choose
0<e=eg so that *¢ are continuity points of Q and define W,;(¢), j=
1,2, -, k(n), to be independent random variables, with W,;(¢) distributed the
same as X,;(¢). Then L [Wo;(€) = thn;(€0) + pnj(€)] converges in distribution
as n— to the infinitely divisible law determined in the form (2.5) by Q.,
Y. (80) =0, a2=0, where

Q(u), fu|>e,
(3.3) Q.(u)= 1 Q(s), O<u=e,
Q(—¢), —e=u<0.

CoRrOLLARY. Let {X.;}, Q, €, and & be as in Proposition B. Write Y,;(¢) for
Y..;(0, € ) and let v.;(e) = E(Yu;(£0,€)). Then St [Y,,;(e)+ va;(€)] converges
in distribution as n — « to the infinitely divisible law determined in the form (2.5)
by Q., v.(g0)=0, and o2=0.

ProrosiTioN C. Let {X.;}, O, €, and € be as in Proposition B and, in
addition, assume that {Z,;} = {X.; — w.;(€0)} satisfies condition (iii) of the main
theorem. Then 37 Y.;(¢) converges in distribution, when n—  followed by
g€ — 0 through positive values such that * ¢ are continuity points of Q, to the

infinitely divisible law determined in the form (2.5) by Q, yo(g0)=0, and o°.

COROLLARY. Assume the hypotheses of Proposition C with an ¢,> 0 such that
condition (ii) of the main theorem holds. Then T{{7Y,;(e)+ 2% n;(£0) — An
converges in distribution, when n — « followed by € — O through positive values
such that = ¢ are continuity points of Q, to the infinitely divisible law determined
in the form (2.5) by Q, y(&o), and o°.

PrOPOSITION D.  Suppose {X.;} satisfies the preliminary conditions of the main

theorem and
k(n)

Sn = E Xn,i - An
j=
converges in distribution as n — . Then the limit distribution is infinitely divisible.
Furthermore, if this distribution is determined in the form (2.4) by Q, v, and o°,
then conditions (i), (ii), and (iii) of the main theorem are satisfied, with (ii) holding
for every £,> 0 such that * g, are continuity points of Q.
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Note that Proposition D gives the necessity part of the main theorem while the
corollary to Proposition C, Lemma 17 of Section 4, and Corollary 3 to
Proposition A yield the sufficiency. In connection with the assumed limit law
necessarily being infinitely divisible, see Bergstrom [3].

4. Preliminary lemmas and counterexamples

We first consider the effect of centering on our various truncation conditions.
We let {a.,;} be a triangular array of real constants such that

lim max la.;|=0.

n—x 1=jsk(n) '

The following results are immediate.

Lemma 1. If
k(n)

limsup > [an;{<o
n-—sco i=1

and {X,,;} satisfies stb, then {X.,;} satisfies smb if and only if {X,; — a,.;} does.

LEMMA 2.  Assume {X,;} satisfies stb. Then {X,;} satisfies smb (g,) for some
&0> 0 if and only if {X.;} satisfies smb. The same holds for ssb (g0) and ssb as well
as svb (eo0) and svb.

LEMMA 3. Assume {X,;} satisfies uan. Then for every r >0 and ¢ >0,

.S’}L%’(‘,.)E(IX"J(E)Ir)“’O asn—®,

In particular, | pt,;(£)| = E(| X.;(£)]), 50 that maX,s;sim | pn;(€)]— 0 as n — o
for every € >0.

LEMMA 4. Let {X,;} satisfy uan and stb. Then for every 0> 0,{X,; — tt;(£0)}
satisfies smb.

LEMMA 5. Suppose {X.;} satisfies uan and stb. For 0< g = g,, let
wi(e) = | [Xes ~ g (e0)l P
X j—tn (el E}

Then maXisjskw)!| vai(e)|—0 as n — o,

k{n)
Hmsup D) | vai(e)] <o,
n—x 1

j=

and hence Z{%[v,;(e)F —0 as n— ». Consequently, if we write
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Zﬁnvi(e) =[Xn; — ,u,,,,-(so)]l({! Xoj — i (€0)! = €}),
k(n) k(n)

0= ,Zl [E((Zni(e))) — var (Zo())] = ,Zl [v.j(e) =0 asn—e.

LEMMA 6. Let {X.;} satisfy uan and stb. Then {X,;} satisfies svb if and only if
{X.; = wnj(g0)} satisfies ssb.

We now examine the necessity of the truncation conditions in the independent
uan case.

LEMMA 7. Assume {X.,;} satisfies uan; for each n, X,,, Xoz, -+ -, Xoxe are
independent ; and there exist constants {A.} such that the sums

k(n)
S,, = Z Xn.j _An
i=1

converge in distribution as n—> . Then according to the classical results (see
Gnedenko and Kolmogorov [5]), for every £,> 0 such that * &, are continuity
points of the function Q associated with the limiting infinitely divisible law,

k(n)

Yu(€0) = ; Hnj(£0) — A

converges as n—«, which is equivalent to saying that /7 [X.; — e, (£0)]
converges in distribution as n — . Thus, again by the classical results, we see that
{X.; — tnj(£0)} satisfies stb and ssb. But this is equivalent to {X.;} satisfying stb
and svb. Furthermore, { X,.;} satisfying uan and stb implies {X..; — p.;(£0)} satisfies
smb and when independence is considered we also get that both {X.,;} and
{Xai = tni(e0)} satisfy sjn.

ExampLE 1. For a counterexample to the necessity of smb and ssb for {X,;},
we suppose that for every positive integer n, X..1, X.2, - -, X,.. are independent
and normally distributed random variables with variance n~' and mean

s = E(Xuy) = [log (n + D (= 1),

for j=1,2,---,n. Note that

max | u,,; | = [log(n + D] *=>0 asn-—w,

=j=n

By Chebyshev’s inequality, P({| X.; — ptn; | > e} =e°n”", j=1,2,---.n, and
hence {X,;} satisfies uan and stb. Since =}, [ X.; — u.;] has an N(0, 1) distribu-
tion and
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> =llog(n+ DI X (—1)j >0  asn—ox,
j=1 j=1

we see that 37_, X,; converges in distribution to N(0, 1) as n — o, It is easy to
show that £/_, E([X.;(e)])—® as n = and =)=, | pa;(e)|—© as n — ®, even
though X7_, u.;(g)— 0 as n — . Thus we see that the convergence of 2., X,; is
equivalent to the convergence of X7, [X.; — ua;(€)], with even the same limit
distribution, and yet the conditions smb and ssb are not satisfied for {X,,}. One
last thing to observe is that despite the fact that 2/_, E([X.;(e)])—® as n -«
and Zj-, [pa; ()] = as n — o, we still have 2. var (X,;(e))— 1 as n— .

We next want to consider the effect of condition (i) of the main theorem, a
condition which implies stb.

LEMMA 8. If maXisjsken|@n; |0 as n—>», then {X,;} satisfies (i) for a
given function Q if and only if {X.; — a.;} satisfies (i) for the same Q.

LeEmMA 9. Let {X.,} satisfy uan and condition (i). Use the notation of Lemma
S and assume that * & are continuity points of Q. Then

k{n)

Z | vaj(€)+ [tnj(€0) = pn;(€)] =0 asn—x,

If * &y are also continuity points of Q, then for 0 <e < g,

k(n)
2 V,,.,(S)—*—J udQ(u) asn — <
ji=1 {

e<|ulseg}
and

k(n)
2 ’ V,.‘,'(E())i—)o asn-—x,

j=1
LEmmAa 10.  Let {X.;} satisfy uan and condition (i). Again use the terminology
of Lemma 5 with the assumption that =+ ¢ are continuity points of Q. Then

k(ny

2 N E(Zu(e)) —var (Xu(e) =0 asn—x
and hence

k(n) - A

_2 |var(Z,;(e))—var (X,;(g))| = asn-—>w,

j=1

Lemma 11. If {X.,} satisfies stb and sjn, then for every r >0, every positive
integer k, and every 0 < g = g,
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k
lim 2 f |X,.,,-+k(so)f'dP=0
{1X,j1>2}
and

dP =0.

lim > J | X.i(€0)
=1 Jixal>e)

Next, by applying Holder’s inequality, first for expectations and then for sums,
we see that if k and s are non-negative integers, ry, r;, and r; are non-negative
real numbers, and r =r, +r,+ r;, then for every ¢ >0

k(n)—k—s " . n k(n) " s
@D 2 (X | X (@) K (2)7) = 2 E( X)),
Furthermore, if {X,;} satisfies ssbh, then
k(n) n
Ki(e)=limsup > E([X.i(2)])
n—x =
is non-increasing as ¢ decreases. Hence if we also assume r > 2, then

k(n)

4.2) lim lim sup > E(| Xa;(e)
£—> n—s% i=1

)= lim e ?Ks(e) = 0.

LEMMA 12. Assume {X.;} satisfies stb, ssb, and sjn. Let k and s be non-
negative integers, at least one of which is positive ; let r,, r, and r; be non-negative
real numbers, at least two of which are positive, with r = r, + r, + r3; and suppose
that either (a)r >2 or (b)r =2 and Kx(e')— 0 as ¢’ — 0. Then for every ¢ >0,

k(n)—k—s

lim 5 E(Xu(@)] | Xupea (@) Xugores () 2= 0.

The next result, which is a direct extension of Lemma 5, involves covariances
and product moments.

LEMMA 13.  Suppose {X.;} satisfies uan and stb. Then for every positive integer
kand 0<e =¢,,

ki{n)—k

2 | E(Zai(€)Zujr(€)) = coV (Zay(e), Zujn(€))]

j=1

k(n)-k
= 2 | Vnj (€ Wnjs(€)|—0 as n—o,
=1

LemMMA 14. Let {X,;} satisfy uan and stb. Then for every positive integer k and
0< £ = Eo,
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k{n)—k R R R .
lim sup I E(Zn‘i(g)zn,j+k(£ )) - COv (Xn.i(g )9 Xn.i+k (8 )) I <,
n—< i=1
LemMA 15. Let {X,;} satisfy uan and condition (1). Assume = ¢ are con-
tinuity points of Q. Then for every positive integer k,

k(n)-k

| E(Zn-i(s )Zn.i+k (£))—cov (Xn.i(s ) Xn,iﬂ(g NI—0 asn—o

=

and hence

k(n)~k
(2 | OV (Znj(€), Zunjrr(€)) — cOV (Xnj(€), Xnjur(€))| =0 asn—x.
&

Finally, let’s consider what happens if {X.;} is ¢-mixing. We need the
following basic result; see Billingsley [4]. If 1=p=cw, p™'+q¢ ' =1, and for
some j, 1=j<j+k=k(n), we have Y is measurable with respect to
B(Xu1, -+, Xu;), Z is measurable with respect 10 B (X vk *> Xokem)s | Yo <
o, and || Z |, <%, then

(4.3) {E(YZ)- E(Y)E(Z)|=2[¢(n, )] | Y |, | Z k.

Note that | X |, =[E(] X |)]"" for 1 =r <, with || X ||. = esssup | X |. Further-
more, (4.3) applies only when Y and Z are both real valued. If one of these
functions is complex valued, the inequality holds with 2 replaced by 4. If both are
complex valued, the inequality holds with the factor 2 replaced by 8.

Now suppose that for j =1,2,---,k(n), Z,; is measurable with respect to
B(Xni), 1.€. Znj = nj(Xa;) for some Borel function g.;, and E([Z,;]*) <. Then
by (4.3) and the Cauchy-Schwarz inequality, for 0= K = k(n)-2,

K k{n)-k

k(n) k(n)
var ( z Zn‘j) - 2 var (Zn‘;') =2 z 2 cov (Zn.;', ZM‘H‘)
j=1 i=1

k=1 j=1

k(n)—1 k(n)—k

2 2 2 cov(Z,j, Zn,i+k)

k=K+1 j=1

=4 ( ::2: [#(n, k)]é) ,:(Zn: var (Z,;).

(4.4) -

LEMMA 16.  Suppose {X.;} is ¢-mixing with coefficient satisfying Ibragimov’s
condition. Assume that, for j =1,2,-- -, k(n), n =1,2,3,--+, Z,; is measurable
with respect to B(X.;) and E([Z.;}?) <. Then

=1

k(n) fc(n)
limsup > var(Z,;)<o implies limsup var ( » Zm,) <
n—so = n—»o
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and

k(n) kin)
lim > var(Z.,;)=0 implies lim var( > Zn‘l.) =0.
no n—x j:l

ji=1
Using Lemma 10, Lemma 15, and (4.4) we obtain our last result.
LEmMMA 17. Suppose {X.;} is &-mixing, with coefficient fulfilling Ibragimouv’s

condition, and satisfies uan, svb, and condition (i). Then for 0 < ¢ = g, where * ¢
are continuity points of Q, we have

var ( ‘2) ZA,“,»(s)> ~var ( E) X.;(e )) k -0 asn—®,

Consequently, for any €,> 0, {X.,} satisfies condition (iii) for > = 0 if and only if
{X,.; — 1n;(€0)} satisfies condition (iii) for the same o°.

We conclude this section by examining the gap in Bergstrom’s proof. The
problem arises when he attempts to construct a Gaussian random vector
Y., (K,e), j=1,2,---,k(n), with mean vector the same as X.i(e), j=
1,2,- -, k(n), and with

4.5)  E(Yui(K &) Yuii(K, £))

{E()A(,.‘,(E)X,.,,-,»k(s)), 1Sk=K, j+k=k(n),

E(X.;(e)X.;-«(¢)), other j and k, 0=k <j=k(n).

But, in fact, the supposed covariance matrix arising from this procedure need not
be non-negative definite and hence the Y., (K, &) need not exist.

ExampLE 2. Let k(n)=n=3. Let {X;} be a sequence of independent
random variables, each taking the two values =1 with equal probability. Let
(Y, Z) be a random vector, independent of the {X;}, each component of which
has the same distribution as an X, but with P{Y =1, Z = 1}) close to 1/2, say
7/16. Let X,, =n7X; for j=1,2," ,n—2. Xun=n2Y, and X,, =n"Z
Given e >0, we assume that nie = 1, so that X,.,,(s) =X, j=12,-++,n Then
the means of the X’,,,,«(s) are all zero and the covariance matrix has for its lower
right-hand 3 X 3 submatrix

1 0 0
n' 0 1 3/4
0 3/4 1

with the remainder of the matrix consisting of zeros except for n~' on the main
diagonal.
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Now suppose K =1 and consider the covariance matrix proposed for
Y.;(1,¢). The only change will be in the first off-diagonals, where all entries
except the lowest are obtained from our original covariance matrix by shifting
the entries up by one position and the lowest remains as it was. In other words,
the proposed covariance matrix will have for its lower right hand 3 X 3 submatrix

1 34 0
n' |34 1 3/4
0 34 1

with the remainder as before, namely all zeros except for n™' on the main
diagonal. But this matrix is clearly not non-negative definite and hence cannot be
a covariance matrix.

5. Proofs of Proposition A and its corollaries

First note that since {X.;} is assumed to satisfy the preliminary conditions of
the main theorem, {Z,;} satisfies uan, stb, smb, ssb, and sjn, as well as being
¢-mixing with coeflicient fulfilling Ibragimov’s condition. We define

i k(n)
®;(v,n,e)=E (exp [i 2 Vnm Ynm(€)+ 2 v,.,,,,Z,.,,,.] )
m=1] m=j+1
for j =0,1,---, k(n), with
Ai(v,n, e)=®;_(v,n,8)—Di(v,n,¢)

for j=1,2,-+-,k(n). Thus we want to prove that, for each V>0,

(5.1) lim lim sup sup [S(v,n,€)|=0,
i Jol=sv

n—w

where

k(n)

S(v,n,e)="Y Aj(v,n,¢)
j=1

=E (exp {1:2 vn_mZn,m] ) ~-E (exp [i HE::) v,.,,,,Y,,,,,.(s)] ) .

For 1=k <s =[k(n)—1]/2, define

k(n)~s

T(v,n,k,s,e)= 2 Ai(v,n,€).
i

=5+1

Observe that, at this point, k appears only as a variable which determines the
range of s. Now
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[T(v,n, k,s,6)—S(v,n,e)|=2s _max |A(v,n )|

and
|A;(v,n, )| = E(|exp [iva;jZn;] = 1])+ E(|exp [ivw;Yai(e)] = 1])
= V(E(| Zj(e) )+ [E(| Z.i(e) I + 4P (] Z.; | > €}),
for o] = V and hence, for every ¢ >0, V>0,

max supIA(vne)|—>0 asn—w
=ik o=

by Lemma 3 and uan. Consequently,

lim sup |T(v,n, k,s,€)—S(v,n,e)|=0

n—x Jol=v

for every s>k =1, £ >0, V>0. Hence, it suffices to prove that

(5.2) lim lim sup lim sup limsup sup | T(v,n, k,s,£)| =0
e—0 k—»x s n—x olls v
for every V>0.
Now suppose we can find a positive integer R and, for r=1,2,-- R, a
collection {A,;(v, n, k, )}, such that, letting Ao;(v, n, k, €) = A;(v, n, €),

k(n)—s

z [A’-i(v’ n, k’ E) - Ar—l‘i(v, n, k, 5)] =

j=s+1

Ilm Ilm | sup llm 1 sup lim sup sup
noe o=V

(5.3)

for all V>0 and r=1,2,---,R. Then it suffices to prove that, for all V>0,

k(n)—s

. Arj(v,n k€)=

j=s+t

54) lim lim sup limsup lim sup sup
e—0 k—rox s> n—x lofi= v

This step by step approximation can be accomplished in a variety of ways. By
making small steps, R becomes larger but each approximation step is easier to
verify. We let R =8 and define

6, =47 ;(v,n k,e)—A,_;(v,n k, &) forr=1,2,---,8,

in the manner listed below. To simplify the notation we write

A= E(exp ["2. v,..,,.f’,.,,..(e)] ) = "tlll E(exp[ivnmZum (€))),

~ k(n)
Bi = E(exp [ivmizmi(e )])’ Cl = E(exp [i 2 U"-"'Z"-"'] ) ’

m=j+1
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i ; . .
D, =E (exp [i 2 Vnm Yom (€ )] ) and  E;n = 0njVumE(Z.j(€)Znm(€)).
m=1

Thus we have A;(v, n, £) = Aj(D;C;-, — D;.,B,C;) and can define

" - k(n)
61, =ADE {(1 ~ [Vn;Znj ()} 12) exp [ivm,-Z,.,,-(s)+ i 2 v,.,,..Z,L,,,]
m=j+i

~ j+k -
+ ivn, 2 (e) (1 S vanZam(e ))
m=j+1

itk - k(n)
X exp [l 2 v,l,,,,Z,._,,. (E) +i 2 vn,mZn,m] }
m=j

m=jrk+1
- AiDiq—l,
. j+k . kn)
82 = A,-D,E{iun.izn.i(e) (1 +i 2, Ounlum(e )) exp (i 2 ”"'"‘Z”“"')
mSn m=jrk+l
itk -
X (1 —exp [l 2 vn.mZn,m(e)] ) } ’
m=7+1

~ 5 2 T &
8:; = AID;E {(Bi —exp [ivn;Zni(e)]) [(1 = [oniZnj () 12) exp (l z | v,.‘,,.Z,.‘m)

m=j+

A j+k . kn)
+ ivn.iZ".i(S) (1 +1i 2 vn‘mZn,M(E )) exp (' E v"'"'Z"‘"') ] } ’
mSFe m=j+k+1

8.; = AiBD,E {([vn.izn,i(s W’12) [exp ( k(z’_')l v,wZ,l_,..) —exp (i k(zn) v,k,.,Z,k,,.) ]} ,

i
m=j+ m=j+k+1

k{n)
ds; = A,-B,-D,E{ [CM —exp <i z v,,_,,.Z,.,,,.) ]

m=jvk+1

A A i+k -
X i0n; 20, (€) [1 +ivniZni(€)2+1 D, l VnmZonm (€ )] }
m=j+

~ ~ i+k ~
b0y = ABDG = Gun) Bl onZs@) [ 1+ i0aZus (V241 3, vanZan(@)] ],
1

m=j+

81 = ABG{ Drs = D) 1+ ion B Zas()~ E(uin P2

m=j—

i1 . A
8s; = AiBiGD; 2 5 UnjUnmE(Znj(€))E(Znm(€)).
m=j—
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Adding these steps and using Z.;(e fexp [iv.;Z.;(¢)] — 1} =0 gives us
Avs(v,n k,£)=A(v,n, e)+ }jl 8., = ABCD, E (Ei-mj = Ejjom)-

Note that Bergstrom’s proposed Gaussian components, as described in Section

4, were designed precisely to make Ag; vanish identically and this appears to be
necessary when the estimate

k¢n)—s k{n)-—-s k{n)—s
2 A?‘J 2 |A8:l— z 2 (Ei mj f3+n=)
j=s+1 j=s+i m=1

is used. Nevertheless, as we shall see, a summation by parts will allow us to
establish the required limit:

k{n}—s k  k{n)-s-m k  k{n)—s
2 Ax,,’ = 2 2 Aj+mBj+mq+mD/+mEj,j+m - 2 2 A;’B,iquEj.j+rn
F=s+1 m=] j=s+l-m m=1 j=s+1

k(n)—s—m

k
= 2 z A]+mB]+mCI+mD]+m ABCD ]E[,+m

m=1 j=s+l-m

k(n)—s

k s k
+ 2.—_ E ABCDE;jim — Z: AiBiquEi-i+'"'

1 j=s+l-m 1 j=k(n)—s—m-+l

Now | Ejjem | = V2| Zuj (&) |ll| Zujim(e)|l for | v || = V and since A;, B;, C;, and D,
are all characteristic functions they are each bounded in absolute value by one.
Consequently

s

k
}_‘, > ABCDE,+,,.

m j=s+i—

(5.5) sup

fef=v

=k’ V“ max E([Z.;(e)])—0

=jsk(n)

as n—w forevery s >k =1, ¢ >0, V>0, by Lemma 3. An identical estimate
holds for

k k(n)—s
sup | > ABGDE;jsm)| -
Jolgv | m=1 j=k(n)~s~m+1
Furthermore,
k(n)-s—-m
2 By =V 2 E(Z.i(e))
j=s+l-m

for ||v || = V, using the Cauchy-Schwarz inequality, and this sum is bounded as
n—w, for s>k=1, e >0, V>0, by ssb. Hence it suffices to prove that, for
every s>kzm=z=1, >0, V>0,

(5.6) max  Sup | AjsmBj+mGi+mDjsm — AB,CD; | =0

1=jskin)=m y|=v
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as n — o, But

| AjsmBjsmGCiemDjem — AiB;GD; |
=|Ajsm = Aj|+|Biim = Bi | +| Gum — G | +| Do — Dy |,

so it is enough to consider each term separately.

jtm-—1 .
sup | Ayen ~ Ay 1= sup B3 [expliveg(e)]~11)

foli=v r=j

=2m mai(n)P({lZ,,J |>€e})—0

1=j=k

as n—> by uan. Similarly,

,ﬂ‘spv! Bisw—Bj|= ,.Sﬁva{E (| exp [iVnjm Yajem(€)] = 11)
+ E(|exp [iva; Ya; ()] = 1])}

=4 maxn)P({] Z,;|> e}).

1=;=k(
Also,
j+m
up | Gon = G = sup E( 3, |exp(ivnZ,)~1])
lof=v foll=v r=j+l1

ém[V max E(| Z,;(¢)|)+2 max P({|Zn‘,[>s})]

1=j=k(n) 1=j=k(n)
-0
as n — =, according to Lemma 3 and uan. Finally,
j+m—1 .

sup | Djs — D; | = sup E( > lexplive, Ve, (e)]—1 })
lof=v Ioll=v =i

=mV max E(|Y.(e)])=mV max ||Z.(e)]

—(

as n—, again using Lemma 3. Therefore, we have the first result we are
seeking, namely
k(n)-s

(5.7) sup | O Asj(v,mk,e)|—0 asn-—>o

Ioll=v | j=s+1

for every s>k =1, ¢ >0, V>0.
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It remains to verify the legitimacy of each of our approximation steps 8,
r=1,2,---,8. We begin with the expansions, valid for real 6,

le® —1—-i6+0%2|=]|6/6,
5.8 .
8) le® —1—if|<|6 .
We let 6 be v,,Z,;(¢) in the first of these and then equal 347X, v, .2, (¢) in the
second to obtain the estimate, valid for every V >0,

k(n)—s k(n)-s ~
sup zlal,,\g S v B(Z(e)Pys
vfl= j=s+ j=s+1

j+k

+E(|Zn.;(8)| [m;+,|2"'m(8)l]z>/2}
=(V*6) :(Z": E(|Zi())

k(n)-m

(V') 2 2 E(1Zue)] | Zine)

j=1

)

=
~

k(n)—m-—r

k-t - R R R
V2 Y 2 E(Zu(e)ZuinZujinse)]):

=1 j=

3

By (4.2) the first sum approaches zero as n — and then ¢ — 0 and does not
depend upon either s or k. The second and third sums do not depend upon s
and, for each k =1 and ¢ >0, they approach zero as n — o, by Lemma 12.

k(n)—s

k(n)—s . j+k . .
||S;IR/ ~21 8,;|= V(1 +kVe) _zl E(] Z.;(g)] 2 lIexp[w,.,mZ,,,m(s)]— 1 !)
ofl= j=s+ j=s+ m=j+
k  k(n)-m "
§2V(1+kVe)mZ=l P f“z. . | Z.j(e)|dP—0 as n—x

for every s>k 21, ¢ >0, V>0 using Lemma 11.

k(n)—s k(n)—s - k(n)
sup | >, 85;|= D sup E{(B,- —exp [ivn;Z.;(¢)])exp (i > v,.‘,,.Z,.,,,.>} l
flofl=v | j=s+1 j=s+1 [lo|=V m=j+k+l1
k(n)—s . k(n)
+ 2 sup E{(Bj —exp[iva;jZn;(€)]) (exp [i 2 vn,,,.Zn,m])
j=s+1 |vi=v m=j+1

—exp [i ki) u,._,,.Z,.,,,.] } !

m=j+k+1

k(n)—s
+ V[1+(1+2k)Ve /2] _2

j=s+1

E(lexp[ivn;Z.i(e)] — 1DE(| Z.i(e)]).
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We deal with each of these sums separately. By means of (4.3), for p =1, g = o,
and complex valued random variables, the first sum is dominated by

k

S sup 86 (n,k + DE(|exp [ivu,Zo(©)]~ 1)

i=s+1 [oll=v

k(n)

=16¢(n k +1) 3, P({| Zu; |> £}).

This sum does not depend upon s nor V and, for every ¢ > 0, it approaches zero
as n— and then k —, by stb and the definition of ¢-mixing.
The second sum is dominated by

Kk(n)-s j+k
S sup |B,~—11E< S Iexp(iv,.,,,.Z,,_m)—ll)

J=s+1 [oll=v m=j+1

k(n)—-s

+ sup E (l exp [ivn;Z.;(e)] — 1| m}i | exp (ivnmZnm)— 1 ])

j=s+1 [vf=V =j+1

k(n)—m

< 3 ST2P( 2y |> EDVE(| Zugom(e))) + 2P Zuson | > £1)]

m=1 j=1

m=1

kin)-m "
Z [2v [ Znjsm(€)| dP

{1ZyjI>€}

+4PU1 2oy 1> 5, Zugon [> )]

which approaches zero as n - for every s >k =1, € >0, V >0, because of
uan, stb, sjn, Lemma 3, and Lemma 11. The third sum is the simplest, since it is
bounded above by

2V[1+(1+2k)Ve/2) kgP({IZn.; |>eDE(1 Z.i(e)))

and this approaches zero as n > o for every s >k =1, ¢ >0, V >0 by stb and
Lemma 3.

k(n)—

> O

j=s+1

k  k(n)-m n R
SV Y Y | VE(Zu(e)| Zun)))

sup
loll=v

+2 | Zni(e)f dp]

{1Znjeml>e}

which approaches zero as n > foreverys >k =1, >0, V>0by Lemma 11
and Lemma 12.
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k(n)-s

85,/

j=s+1

llvll= v

k(n)—s
= 2 su
j=s+l |v|=V

E( [(f,»+k —exp (i ki) v..,mZn,m>] VniZnj(E )) l

k{n)—s

k{n) R
+ 2 Sup E( [Cj+k - exp (l 2 vn,mZn,m)] [vn‘izﬂ.]’(6 )]2/2) l
j=s+l foll=v m=jtk+1
k(n)—s k(n) j+k R .
+ > sup E([CM —exp<i > v..,mZn,m)] > ] Un,ivn.mZn.i(s)Z"M(g))'
j=s+1 |vl=Vv m=j+k+1 m=j+

Again we shall deal with these sums one at a time. The first is dominated by

k(n)—s k(n)—j

%

(UnIZn](E)[ j+m—1 Cj+m

j=s+1 l|u||<V m

kin

—exp< E vn_,zn.r> (exp[ivn.ﬂmem]‘”])'

k(n)—s (n)~j
= 2, suwp MZ A& (n, m)F|| vniZni (&) 2| exp [iVnjemZajim] = 1]

k(n)—k-1 R k(n)—j . - 1
s 2 VIZu©k 3 [0 mHV] Zuyin (@)t 2P Zusin > e}

=4v' 3 (o m [V Y E(Zu @D +2[ 3 Euten)|

<[ 3Pzl en]']

for every £ >0, V >0, using (4.3) for p = g =2 and one factor complex valued.
But the last sum does not depend upon s and approaches zero as n — « and then
k — o, according to sth, ssb, and Ibragimov’s condition.

The second sum can be estimated by

k(n)

2V2h(n k +1) 2 E(Z.i(e)])

for every £ >0, V >0, this time using (4.3) for p =1, g =« with one complex
factor. This expression does not depend upon s and tends to zero as n — and
then k — %, using ssb and the definition of ¢-mixing.

For the third sum we get the bound
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k{n)-s

z SU 2 vn/vn,+mE(Zn,(8)Zn/+m(8)[ j+k - q+s—l + (jj+541

j=s+1 HvU<V m=1
k(n js—1
—exp( 2 r, )(exp[ Z u,.,,Z,.,,:|—1+l>]> '
r =} r=j+k+1

Z0i () Znjm(#)])

s—1

sk
=V E: > supE(lexp(lv,.,+, i)~ 1

j=s+1 m=1 r=k+1 |p||=Vv
k(n)-s k s—1 R .
TV 2 2 2 sup E(exp (onyerZuser) = 1] | Zuy(e) Zujem(e)])
j=s+1 m=1 r=k+1 {o|=
kin)-s k
V2 2 4b(ns ~mE(| Zuy(€)Zusem(e))
j=s+ =

1=j=k(n)

<skV2k§)E([Zn,(e)])[V max E(|Z,,,(s)|)+2 max P({|Z,,,[>e})]
PV S S E(Z0(e) 2 (€)sene) )

+2Vike S ZJ 1 Z.,(c)| dP
/ {Znjerl>e}

k(n)

+4kV? 2 E([(Z.;(€)] )[ max o(n,s ——m)]

Now with the exception of the last term, each of these sums approaches zero as
n—xforevery s >k z1,¢& >0, V>0, via uan, ssbh, Lemma 3, Lemma 11, and
Lemma 12. The last sum, obtained from (4.3) with p = 1, ¢ = © and one complex
factor, approaches zero for every k 21, ¢ >0, V>0 as n = and then s — o,
again using ssb and the definition of ¢-mixing:

k(n)~.

0 S [Gamer Crom || VIE@aste)]

j=s+1 ||u||<Vm 1

+ VE([Zoj(e)P)2+ V2 ME:. (E(z“n,,-(s)z‘n_,-+m(s))|}

1=j=k(n) 1=j=k(n)

ék[v max E(|Z.;(¢)])+2 max P({ |Zn,|>s})]

k(n)

<[V B+ via+20n 3 EZuep)

—0
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as n—» for every s>k =1, ¢ >0, V>0 by Lemma 3, uan, smb, and ssb.
In the next step, we deal with the Gaussian components {Y,;(¢)} and so we
need the relation, valid for (X, Y) with a 2-dimensional normal distribution,

(5.9) E(exp[i(X+Y)])= E(exp(iX))E(exp(iY))exp[—cov (X, Y)].

Consequently,

D, = D;E (exp [ivn; ..,(e))exp[ 2:] ..,v..,...COV(Zn.j(e),Zn.m(E))]

and thus
k{n)~—s

sup z 67,,‘

lol=v | j=s+1

k(n)—s j—1 n ~
= 2 sup exp [ - UnjUnm COV(Z,i(€), Znm (& ))]
m=j—k

j=s+1 vllsv =j—

jek—1 R R
X exp [ =D Vnjnm €OV (Znj(€), Znm(e ))] -1 ’
m=1

k(n)-s
+

i=s+1 fol=sv

E(exp [iva; Ya;(€)]) exp [ - S_k UnUnm COV(Zoni (€), Zom (€ ))]

- [1 + iV;E(Z0i(8)) — E((VniZs()])/2
- Ji O Vnm COV (2 (€), Zom (€ ))] ’ .

m=j—k

Next, observe that

ji—1

> Vnjlnm cov(z‘n,,(e),z‘m(e))’<kv max E([Z.;(e)P)

mSik _1sjskin)

lofls v

and

j—k-1 . .
21 Un,jUn,m COV (Zn,i(e )’ Zn.m (8 ))

sup
lol€v | m=

k{n)—-1
=2V* max E(Z.(e)]) 2 [¢(n, m)E,

with each of these bounds approaching zero as n — », foreverys >k =1, ¢ >0,
V>0, using Lemma 3 and Ibragimov’s condition. Consequently, for n suffi-
ciently large, the first sum in our estimate cannot exceed
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exp { kV? max ) E([Zn.i(g)]z)}

=jzk(n

=

(n) —1

X4V? [&(n, m)F| Z.,(e)e

j<k+2 m=k+1

o~

Zn.i—m(8)||2

Sexp {sz dnax E([Z.(e )]2)}

=sjsk(n
k(n)—1

k(n) .
xav: 3 [¢(nm)} ; E(Z.i(e)])

which does not depend upon s and approaches zero as n — « and then k — o,
for every € >0, V >0, by the above remark, ssb, and Ibragimov’s condition.
For the second sum we temporarily introduce the notation

S, = iv, E (Zn,i (e))-E ([Un.iZn,i (e )]2)/ 2,
i R R
S2= = D\ OnjOum COV(Znj(€), Zom(e)),
m=f—
E. = E(exp[iva; Y (e)]), 2, =exp S,
R1='E|—(1+S1)| and R2=IE2—(1+82)'.

kn

Then we need to estimate Z;%%7 supyuysv | ExEo— (14 S, + S2)|, where
lE]Ez“(l‘f'S]+Sz)'§R2+‘1+52'R1+lslszl,

since | E;| = 1. Now since S,— 0 as n — », we see that for n sufficiently large and
loli=Vv

R:=|S,[ =k*V*E([Z.;(¢)P) max E(Z.;()]).

SX
Furthermore, for ||v || = V
R, = V’E(] Yui()P)
=4V [E(| Yui(€) = i (e) ) + | E(Zus ()]
SAVU[E(Z.(e))FQRmY +| E(Zn(e) [}

Consequently, for s >k =1, ¢ >0, V>0 we see that as n —>

k(n)—s

sup | E,E;—(1+ 81+ S,)|—0,

j=s+1 joljlsv

where we make use of Lemma 3, smb, and ssb.
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k(n)—s

> B,

jEsHI

sup
olis v

<kV® max E(!Zn,(*?)’)z |E(Z.i(e))]

1=j=k(n)

which approaches zero as n— > for s>k =1, ¢ >0, V>0, according to
Lemma 3 and smb. This completes the proof of Proposition A.

Corollary 1 is implied by the assertion that for every positive integer M, every
partition 0= £, < t, <--- <ty =1 of the unit interval, and every V > (), we have

(exp {i’ﬁl Om[Un(tw) — U. (tm—l)]} )

lim lim sup sup

e—0 n—x Joli= v

—E(exp{ é [T (tm, €) = Toi (b 1,8)]})\ ,

where v = (v1, 02, +, om) and || v || = maxizm=m | vm |. This follows immediately
from Proposition A if we define v,; = v, for [k(n)0,(t.-))] <j =[k(n)6.(1.)]
with v,; =0 for other values of j. Corollary 2 is a special case of this, letting
M =1 and t, = 1. In Corollary 3 we have just added the same centering term to
each of the sums we are comparing.

6. Proofs of the other propositions and their corollaries
PROPOSITION B. {W,;(¢)} satisfies uan, since for u >0

P{| X |>u}, |ul>e,

6.1) P({| Wai(e)|> “})={
P{| X.i|>¢e}, O0<|u|=e

Similarly, we see that {W,;(¢ )} satisfies condition (i) of the main theorem for
the function Q.. Furthermore, for 0< ¢’ =¢,

W, (e)({| Way()|=e}) =0
and hence

k(n)

6.2) lim lim sup z Var[W,,;(e)I{| W.;(e)|=e'})] =

Consequently, by the classical theorem for sums of independent random
variables,

k(n) k(n)

3 Falor= [ Wse)dP] = 3 (W)= s (e) i)

converges in distribution as n — o to the infinitely divisible law determined in
the form (2.5) by Q., y.(s0)=0, and o2 =0.



Vol. 47, 1984 A NEW LOOK AT BERGSTROM’S THEOREM 57

CoroLLAaRY. By means of Lemma 3 and Lemma 8, we see that
{X,; = tnj(€0)} satisfies uan and condition (i), with the same Q as for {X,;}.
Hence 2% [ Y., (€)= vw;(£0) + o ()] converges in distribution as n — % to the
infinitely divisible law determined in the form (2.5) by Q., v.(g4) =0, and o} = 0.
However, by Lemma 9,

k(n)

z VUnj (5 0)

i=1

k(n)
=Y | vi(e0)| =0 as n—>o,
=

ProrosiTion C.

E(exp [iv‘f(") Y,,_,(e)] )

= E(exp [ivk.w f/,.,,(s)] ) E<CXP [ivki) ?n.i(e)] )

=exp { —v’var [ ,;(an) ZA,.',(s)] /2} E(exp {iv,;(g)[ﬁ‘,(e)+ v,.,,»(e)]} )

and we know that the second factor converges as n — o, uniformly for [v | =V,
to exp [¢.(v)], the characteristic function of the infinitely divisible law deter-
mined by Q,, y.(g0) =0, and o2 =0. Furthermore, if exp [¢(v)] is the charac-
teristic function of the infinitely divisible law determined in the form (2.5) by Q,
Yo(€0) =0, and a3 =0, then for |[v|=V

g(VZ/z)J(0 udQ(u)

<|ul=e}

@)= o) =| [ (e - 1-iw)d0w)

which approaches zero as ¢ — 0. Since {Z,;} satisfies condition (iii), we have
k() kgn)

exp [ —v’var [ Z Zn,,(s)] /2} E(exp {iv [Y.i(e)+ V,.,,-(s)]} )
j=l =1

~exp[ - (070*2) + o]

!

= ' E(exp{iv‘;(g)[f’,,_,-(e)+ V,._,-(s)]} ) —exp[¢. (v)

+[exp[¢. (v)] = exp [¢o(0)] | + (v°/2)

kn)
var [ D Z,.,,-(e)] -o’
j=1

which approaches zero, uniformly for | v | = V, as n — « and then £ — 0 through

positive values such that *¢ are continuity points of Q. The limit is the
characteristic function of the infinitely divisible law determined in the form (2.5)
by Q, vi(e0)=0, and o>.
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COROLLARY.

, E (CXP {iv [ ’;2) Y.i(e)+ ’:(2: Hni(€0) — A,.] }) —exp [ivy(eo) — (v°07/2) + o(v)]

k(n)

2 tnj(€0) — An — ¥(€0)

=lv|

+] E(exp[ioS: Yuste)] ) - expl - @0+ o)

j=

which approaches zero, uniformly for | v | = V, as n — » and then £ — 0 through
positive values such that * ¢ are continuity points of Q. In this case, the limit is
the characteristic function of the infinitely divisible law determined in the form
(2.5) by O, y(eo), and o”.

ProposiTioN D. If F and G are characteristic functions, let
(63) d(F,G)= Y 2" sup | F(v) =~ G(v)),
m=1 [v|=m
so that convergence in the metric d is equivalent to uniform convergence
on compact subsets of the real line and hence to convergence in distribu-
tion. Thus if &>0 is arbitrary, F,. is the characteristic function of

KDY, i(£)+ S tn;(20) — As, and G is the characteristic function of the limit
dnstrlbutlon of i X,.; — A., we know from Corollary 3 to Proposition A that

(6.4) lim lim sup d (F.. G)=0.

Let S(n,e)=3VE(Z.;(e)]) and V(n,&)=var[Z}%’Z,;(¢)]. Then by
Lemma 6 and Lemma 16 we see that S(n, ¢) and V(n, ¢) are bounded for n =1
and 0 < ¢ = g,. Let {n(m)} be a strictly increasing sequence of positive integers
and define

6.5) S'(e)=lim sup S(n (m), e), S§'=lim sup S'(¢).
Let {&,} be a sequence, decreasing to zero as r — , such that
6.6) 11_12 S'(e,)=S".

Now choose {m(r)} to be a strictly increasing sequence of positive integers such
that

6.7) lim S(n[m(r)],e.)=S" and limd(Fumera, G)=0.
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By passing to a subsequence of (n[m(r)), &,) if necessary, we can assume that the
bounded sequence {V(n[m(r)], &)} converges, say

6.8) lim V(n[m(r)),&)=0"20.

Since

F..(v)=exp[—v*V(n, £)/2]

X E(exp [iv{ ki)[f/,._,(s)+ va; ()] + :2) o (£0) — A..} ] ) ,

j=1
we see that, for every v, the characteristic function of

Ka{m) k(n{m()D

2 [Yaimeni(&) + vapmoni(e)] + 21 Menfmy1i (E0) = Anpme)
j= j=

converges as r —  to the continuous function G (v)exp (v20%/2). Now { Yumey,}
are independent for each r and satisfy uan, since

(6.9) P{| Yaimeni(e) 1> €}) = P(| Zumen |> €})

for r sufficiently large that ¢, = ¢. Consequently, by the classical theorem for
within-row independent uan random variables, we see that G(v)exp (v20?/2)
must be the characteristic function of an infinitely divisible law, determined by
Q, v, and o, say. Furthermore, we know that, for every u > 0 that is a continuity
point of Q,

_ ka[moD .
—0W=tim 5 P(Fumoni(e)> u))

. k(n[m(r)})
=lim Y, P{Zumoni > u}),

r— =

that, for every u <0 that is a continuity point of Q,

k(n[m(r)})

R  kafmoD
Q(u)=lim 21 P({ Yumeni(e:) < u})=lim 2 P({Zutmens < u})
=

and that

kn{m(r)D ) ~
o6 =lim lim sup 2 var [ Yaimeni (8 )I{| Yapmeni(e:)| = €})]
<

(6'10) k(n[{m(n]
= lim lim sup var [Zumend (& <| Zumeni | = €}).

0 r—x i=1
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However, for 0<e¢, <e¢,
var [ Zumeyd (e < | Zaimin |= e} = E([annml.i(g)]z - [anmuu.i(&)]z)’
so that

0=o00= lim sup lim sup [S(n[m(r)], €)= S(n[m(r)]. &.)]
= lim sup [lirp__sxup S(n[m(r)).e)-8’
= lim sup [$'(e) = 5" = §'= 5 =0.

Consequently, G(v)exp (v’a’/2) is the characteristic function of the infinitely
divisible law determined by Q, v, and o) =0, which shows that G is the
characteristic function of the infinitely divisible law determined by Q, y, and ¢".
Hence these quantities are determined uniquely by G.

From now on, we shall assume that £,> 0 is chosen so that = ¢, are continuity
points of Q. Thus what we have shown so far is that for every subsequence
{n(m)} of {n}, there exists a sequence {¢,} of positive numbers converging to
zero as r— » and a further subsequence {n[m(r)]} such that {X, ...} satisfies
condition (i) for this Q,

lim V(n[m(r)), )= o,
and

kin[mn]) Km{n(r))
Y [Yatmoni(e)+ vatmeni (€] + 2 it (€0) = Angmiry

j= j=1
converges in distribution as r —  to the infinitely divisible law determined by Q,

v, and o =0. However, since * g, are continuity points of Q, we also know
from the classical case that

k(n[m(r)) k(n{m(r))

Yoimeni(€)dP + 21 Vnimli (€7)
P2

'y(g()) = lim [ f .
e =1 Y pmeryie IS ot

k(n[m()])

+ 21 P«n[mml.i(go)—An[m(r)]]

j=

Vnimri (€0) + E Mnimo)i (E0) = Anmry

j=1

= lim

r—ce

[ k(n[m(r)}) k(n{m(r)]) :|

k(na[m ()
=lim [ 21 #n(m(r)i.i(so)—An[m(rn]

r—x =
ji=
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making use of Lemma 9. At this point we can see that {X,;} must satisfy
conditions (i) and (ii) of the main theorem, with (ii) holding for every &, > 0 such
that =+ g, are continuity points of Q. Furthermore, applying the coroliary to
Proposition B, we now see that if 0 <& = g, with = ¢ continuity points of Q,
then K[ Yo, (€) + i (€)] + 2545 i (£0) — An, which has characteristic function

H..(v)=E,..(v)exp[v*V(n, £)/2],

must converge in distribution as n —> o to the infinitely divisible law determined
by Q., v(&), and o:=0. This law has characteristic function

exp [ivy(eo) + ¥ (v)] — exp [ivy (o) + Yo(v)]
as ¢ —0. We also know that G(v) = exp [ivy(g0) + ¥o(v)] exp [ — v’0*/2] and, by
(6.3) and (6.4),
(6.11) lim lim sup sup |F.(v)- G(0)|=0
=20 ool gy
for every V > 0. Suppose that V(n,e)= B for n 21 and 0< ¢ = ;. Then we
must have o’ = B as well. Hence, by the mean value theorem,
(v 2)| V(n,e)— o’ |Zexp (v°B/2)|exp[— v°V(n, e)/2] —exp (— v’a?/2)]
= exp (v°B/2){| Foc (v) = G(0) |+ exp [ivy (£0) + $o(0)] = He (0) [} | Ho (0) .

Since
lim | H,. (0)| = exp[¢. (v)]|>0
and
lim |exp [¢. (v)]| = [ exp [¢(v)]| >0,
we see that
(6.12) lim lim sup (v°/2)| V(n, )~ o[ =0,

when ¢ — 0 through positive values such that * ¢ are continuity points of Q.
Therefore, by Lemma 17, {X,;} satisfies condition (iii) with this value of o”.
7. Corollaries of the main theorem

We first consider the case of finite variance, as in Theorem 1.2 (but mistakenly
labeled 2.1 on page 175) of Bergstrém [2].
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CoroLLARY 1 (Extension of Lindeberg’s Theorem). Let {X,;} be ¢-mixing
with coefficient satisfying Ibragimov’s condition, E(X,;)=0, j =1,2,-- -, k(n),
and

k(n)

2 var(X,;)=1
j=1

for n=1,2,3,---. Then {X,;} satisfies uan, sjn, and =/} X,; converges in
distribution as n —« to the N(0, c*) law provided that

k(n)
(7.1) lim var( > X,.,,) =g’
j=1

n—»w

and Lindeberg’s condition is satisfied ; that is, for every ¢ >0,

k(n)

(7.2) lim 2 E((X..(s)])=0.

PrOOF. First note that P({| X,; | > e}) = e *E([X,,;(e)]") = ¢ var (X,,) and
var (X.,(£)) = E((X.;(¢ )]) = var (X.,). Consequently, {X,;} satisfies stb and svb
in any event. Now if Lindeberg’s condition is satisfied, we see that condition (i)
of the main theorem is satisfied for Q =0 on (— %, 0) U (0, ) which implies uan
and sjn. Furthermore, since E(X,;)=0, we have

|E(X.i(e))| = | E(Xi ()| = e "E(( X (e)P),

so that for every g,>0,

k)

lim z wni(€0) =0.
=1

n—o

Finally, since

k(n) .
lim D var(X,;(¢))=0
n—e 29
for every £ >0, Lemma 16 shows that
k(n) .
lim var ( 3 X.,,,(s)) =0
n—ax i=1
for every £ > 0. Thus we see that for every ¢ >0,
k(n) n
(7.3) lim var( S X,,,,-(s)) Ty
n—® j=1

Consequently, {X,;} satisfies the preliminary conditions and conditions (i), (ii),
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and (iii) of the main theorem, with A, =0 and y(eo) = 0 in (ii), which proves that
as n—o 2% X, converges in distribution to the N(0,a°) law.

Notice that condition (i) being satisfied for Q =0 is equivalent to the sums of
the tail probabilities being asymptotically negligible, stn; that is,

k(n)

lim 3 P({ X.; > e} =0

for every ¢ >0. Under stn, we observe that for ¢-mixing {X,;} with coefficient
satisfying Ibragimov’s condition, (7.3) is equivalent to condition (iii) of the main
theorem. For if condition (jii) is satisfied we know that {var(S;% X, (¢))} is a
bounded sequence for each & >0. Since var[[ X,;(¢)— k% X,.;(e")] ap-
proaches zero as n —®, by (4.4) and the fact that with Q =0

k(n) k(n)

lim ' var (X,;(¢)~ X, (e ) =lim Y E((X.;(e) ~ Xei(e")f) =0,
n—o =9 n—e 7
we see that
k(n) . k{n) R
lim sup var < Z X..j(e )) and lim inf var < 2 Xai(€ ))
n-—w j=] n—® i=|

do not depend upon &. Consequently, condition (iii) implies (7.3) in this case.
Thus for convergence to the N(0,c”) distribution we can simplify the main
theorem as follows (see theorem 6.5 of Bergstrom [1]).

CoroLLARY 2 (Normal convergence). Let {X.;} be ¢-mixing with coefficient

fulfilling Ibragimov’s condition and suppose {X.;} satisfies stn and svb. Then

4 X..; — A converges in distribution to the N(0,a”) law if and only if

k(n)
(7.4) D pai(e)— An—0 asn—»o
=

for some (and hence all) ¢ >0 and (7.3), namely
k(n) “
var( 2 X"J(g))—> o2 asn—> o,
i=1

for some (and hence all) ¢ > 0.

For infinitely divisible laws with o® =0, for example the non-normal stable
laws, we can reduce the question of convergence in certain cases to that of the
classical within-row independent situation. One possibility is the following.

COROLLARY 3. Let {X.;} be ¢-mixing with coefficient satisfying Ibragimov’s
condition. Furthermore, suppose {X.;} satisfies uan and sjn. Let {Y,,} be random
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variables, independent for each n, such that Y,; has the same distribution as X, .
Suppose that as n —>», (% Y,; — A, converges in distribution to the infinitely
divisible law determined in the form (2.4) by Q, vy, and ¢°=0. Then

¥ X,.; — A, converges in distribution as n — o« to this same law.

PrOOF. We can see immediately that {X,;} must satisfy (i) and (ii) of the main
theorem for the same Q and y (&) as {Y,,}, using the classical uan independent
case results. In particular, this shows {X,;} satisfies stb. Also, we know that

k(n)

(7.5) lim lim sup 2, var (X,,(¢))=0
£~ n-—»x j=1

when ¢ — 0 through positive values such that * ¢ are continuity points of Q.
This also shows that { X} satisfies svb, so all preliminary conditions are verified.
Finally, using (4.4) to extend Lemma 16 to include iterated limits, we see that

k(n) .
(7.6) lim lim sup var ( >, (X.(e )) =0,
e n—o i=1

again when ¢ — 0 through positive values such that = ¢ are continuity points of
Q. Hence {X,,} satisfies (iii) for o* =0.
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