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ABSTRACT 

In his 1972 Periodica Mathematica Hungarica paper, H. Bergstr6m stated a 
theorem on convergence in distribution for triangular arrays of dependent 
random variables satisfying a ~b-mixing condition. A gap in his proof of this 
theorem is explained and a more general version is proved under weakened 
hypotheses. The method used consists of comparisons between the given array 
and associated arrays which are parameterized by a truncation variable. In 
addition to the main theorem, this method yields a proof of equality of limiting 
finite-dimensional distributions for processes generated by the given associated 
arrays as well as the result that if a limit distribution for the centered row sums 
does exist, it must be infinitely divisible. Several corollaries to the main theorem 
specialize this result for convergence to distributions within certain subclasses of 
the infinitely divisible laws. 

I. Introduction 

In the early 1970's, H. Bergstr6m [1-3] wrote a series of papers concerning 

comparison methods for convergence in distribution of row sums of triangular 

arrays of dependent random variables. In [1] and [3], the basic idea was to 
approximate the row sums by suitable partial sums, with gaps determined by a 

partition of the row index, and then compare these partial sums with associated 

ones formed from independent summands. However, in [2] the comparison 

method was quite different and consisted of approximating the given array by an 

array in which each row is the sum of two independent vectors, the first one 

Gaussian and the second with independent components. 

The major theorem of [2] states that for triangular arrays of dependent 

random variables, satisfying a th-mixing condition with specified decay rate and 
certain other preliminary conditions, the joint fulfilment of three limit relations 
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is both necessary and sufficient for the convergence in distribution of the row 

sums of such an array to an infinitely divisible law. These three relations are 

essentially the same as those in the classical case of triangular arrays having 

independence within each row (see [5]). A close examination of Bergstr6m's 

paper reveals that the proof as given there will go through only in the event that 

each row of the array is part of a stationary sequence. Nevertheless, the theorem 

is true as stated and the proof can be corrected to demonstrate the validity of the 

result. In fact, not only is the theorem true but it can be improved, as can some of 

the key propositions leading up to it. Furthermore, the nature of the preliminary 

conditions can be clarified and, consequently, these conditions can be weakened. 

2. Definitions and notation 

We consider triangular arrays {X,.j}, where for each positive integer n the 

random variables X,.j, j = 1 ,2 , . . . ,  k(n),  are defined on the same probability 

space and {k(n)} is a non-decreasing unbounded sequence of positive integers. If 

I (A )  denotes the indicator function of the event A and e > 0, we define 

(2.1) 

and 

Yr ) = x . , d  ({ I X~,j l ~ e}), 

R,. j(~ ) = X,. j  - Yr ) 

f 
~n,j ( 6 )  = E(X,,i(e)) = ] X,,jdP. 

Xn,j ~ 

{X,,i} satisfies the weak dependency condition known as ~b-mixing if and only 

if the mixing coefficient ~b(n,k), defined for k = l , 2 , . . . , k ( n ) - l ,  n =  
1, 2, 3 , . . . ,  to be the supremum of [ P(A A B) - P(A )P(B) ]/P(A ) taken over all 

events A and B such that for some j, 1 ~ j  < j  + k =< k(n),  

A E @(X,,1,'" ", X,.i), P(A )> O, and B E @(X,,j+k,'' ", X,,k(,)), has the property 

that 

(2.2) k~lim limsup ~b(n, k) = 0. 

This mixing coefficient satisfies the decay rate known as Ibragimov's condition 

[6] if and only if 

k(~)-] 
(2.3) lim lim sup ~ [~b(n,j)] ~ = O. 

k ~  n ~  j = k  

We next consider conditions on truncated versions of {X..j} which are related 
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to the question of convergence in distribution, for suitable constants A., of the 

sums 

k(n) 

S . =  ~ X . a - A . .  
i = 1  

We list six such conditions here, although another appears in Section 7. 

uan(e): lim max P({ ]X..~ J > e}) = O. 

kCn) 

stb(e): limsup ~ P({IX,~ ] > e})<  =. 

k(n) 

stub(e): lira sup ~ t~..~(e)l < =. 
n ~  j = l  

k(n) 

ssb(e): limsup Z E([X',~i(e)]2) < ~"  
n ~ =  j = l  

k(n) 

svb(e): limsup ~ var(X',~i (e )) < 0o. 
n ~ =  j = l  

sin(e): !!m ~,~-k P({J X..j l >  e, l X.a+k l >  e}) = 0 for every positive integer k. 
j = t  

We say that {X,~i} is uniformly asymptotically negligible, uan, if and only if 

uan(e)  is satisfied for every e > 0 .  Similarly, we can define: sums of tail 

probabilities bounded, stb; sums of absolute values of means bounded, smb; 
sums of second moments bounded, ssb; sums of variances bounded, svb; and 

sums of joint tail probabilities asymptotically negligible, sin. 
In the case that for each n, the random variables X,.j, j = l, 2 , . - . ,  k (n), are 

independent, the basic assumption made in many theorems concerning con- 

vergence in distribution of the sums {S.} is that {X,~j} satisfies uan. If this 

condition is satisfied in the independent case and, in fact, the sums {S.} do 

converge in distribution, then it turns out that {X.,i} must satisfy stb and svb. 
Furthermore, in the case of independence, uan and stb imply that sin is satisfied 

as well. In summary, it turns out that for independent uan random variables, stb, 
svb, and sin are necessary conditions for convergence in distribution of the sums 

{s.}. 
If e *(~ is the characteristic function of an infinitely divisible distribution, then 

= ivy - v~o'2/2 + f [e ~"~ - 1 - iuv/(1 + (2.4) r u 2)]dQ(u ), 
Ji lul>O) 
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where - ~ < 3' < ~, o-2 __> 0, and Q is non-decreasing on ( - 0% 0) and (0, oo) with 

liml,r-~ Q(u) = 0, and f{,,<tul~} u2dQ(u) < oo for every e > 0. Thus for any e > 0. 

we can write 

(2.5) ~b(v)= iv3"(e)-v2o-2/2 + II~t>~} (e '"~ l)dQ(u) 

+ Io<l.l~-~} (e 'u~ - 1 - iuv)dO(u), 

where 

(2.6) 3'(e) = 3' + ~,,<,,,~,} u3/(1 +u2)dQ(u)-f{,.,>,} u/(1 +u2)dQ(u). 

Note that  if Q is known and 3'(eo) is known for some eo > 0, then 3' is known, as 

is 3'(e) for all e > 0 .  In fact we have, for 0 < e  <eo ,  

f{ udQ(u). (2.7) 3 ' (eo)-  3'(e) = ,<j.t_~o} 

3. Statements ot results and methods o| proo| 

MAIN THEOREM. Assume {X~.i} satisfies the preliminary conditions: ck-mixing 
with coefficient fulfilling Ibragimov's condition, uan, stb, svb, and sin. Then 

k(n) 

S~ = ~ ,X ,~ , -A~  
i=l 

converges in distribution as n--~oo to the infinitely divisible law determined in the 
form (2.4) by Q, % and o "z if and only if 

k(n) 

(i) lim ~ P({Xn.j > u}) = - O(u) 

whenever u > 0 is a continuity point of Q, and 
k{n) 

lim ~ P({Xn.j < u} )=  O(u) 

whenever u < 0 is a continuity point of Q; 
(ii) for some eo > 0 such that +- eo are continuity points of Q, 

lim /z~,j(eo)- A ,  = y(eo); 
n~| i= 1 

and 
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(iii) lim lim inf var ~ X..j(e = lim limsup var .~'.j(e = o -2 

when e ~ 0 through positive real numbers such that +- e are continuity points of  O. 

Observe that this theorem includes the classical result for independent uan 
random variables, which states that (i), (ii), and (iii) are necessary and sufficient 

for convergence in distribution of {S,} to the infinitely divisible law determined 

by Q, y, and o -2, without further preliminary conditions. We have already 

mentioned the necessity of stb, svb, and sin in the independent uan case and for 

sufficiency it is enough to realize that (i) implies stb, (iii) and independence give 

svb, and, as before, independence, uan, and stb yield sin. In Bergstr6m's 

theorem [2] only the case A.  = 0 is considered, the preliminary condition svb is 

replaced by the stronger condition ssb, and the additional condition stub is 

imposed. Bergstr6m also states that o-2> 0, which eliminates the stable laws as 

possible limits, but this restriction is certainly not needed. 

In order to prove the theorem, we shall use the classical results in combination 

with a modified version of the comparison method of Bergstr6m. The compari- 

son involves the given ~b-mixing array, centered at the truncated mean/z,,j(eo), 

and associated arrays parameterized by e, for 0 <  e =< eo. These arrays are 

constructed as follows: given 0 < e ~ eo and a positive integer n, 

(a) define ~',.j(e,,,e), j = l , 2 , . . . , k ( n ) ,  to be a Gaussian random vector, 

independent of the X,,j and having the same mean vector and covariance matrix 

a s  

[X~., - tz,.,(eo)]I({I X.j -/z,,,(eo) I _- < e}), j = 1 , 2 , . . . ,  k(n);  

(b) let Y,.j(eo, e), j = 1 ,2 , . - . ,  k(n) ,  be independent random variables, inde- 

pendent of the lk,,j(eo, e) and of the X.,j as well, such that Y,j(eo, e) has the 

same distribution as 

[X,,j - i~, , j(eo)]I({lX,,  j -/~,,j(eo)I > e}), ] = 1 ,2 , . - . ,  k(n);  

(c) finally, let Y,,j(eo, e ) =  I?,j(eo, e ) +  IT".,j(eo, e), j = 1 , 2 , . . . , k ( n ) .  

Our modifications to Bergstr6m's method can now be described. First of all, 

we stick to Fourier analysis, i.e. characteristic functions, rather than using his 

Gaussian transform. Secondly, we define the Gaussian parts of our associated 

arrays without the changes in the covariance matrices that cause Bergstr6m's 

proof to break down (see the end of Section 4). Thirdly, we compensate for use 

of these unchanged covariance matrices by a slightly more delicate analysis of 

the comparison between the given and the associated arrays. 
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We can now state the propositions which combine to prove the main theorem. 

Some of these go beyond the minimum needed for this theorem and hence have 

interest in their own right. This is particularly true of the fundamental compari- 

son proposition, Proposition A, which leads to equality of limiting finite- 

dimensional distributions for processes generated by the given and associated 

arrays. In addition, Proposition D shows that under the preliminary assumptions 

of the main theorem, the only possible limit laws for the sums {S.} are, as in the 

independent case, the infinitely divisible distributions. 

PROPOSITION A. Let {X.,~} satisfy the preliminary conditions of the main 

theorem. For arbitrary e,,>(), let Z.., =X.. , - /x.4(e, , )  and write Y . j (e )  for 

Y.,j(e,,, e ), 0 < e <= e.. Let v = {v.4} denote an array of real constants and define 

il v l] = sup{[  vo., I : J  --- 1 ,2 , . . . ,  k(n) ,  n = 1 ,2 ,3 , . . .  }. 

Finally, define 

(3.1) S ( v ,n , e )  = E(exp[ikj~v, , jZ, , j]  - E(explik2'v,4Y,,j(e)l).j~, 

Then for every V > O, 

l iml imsup sup S(v ,n ,e ) ]=O.  

COROLLARY 1. For n = 1 ,2 ,3 , . . . ,  let O. be a continuous, strictly increasing 

mapping of the interval [0, 1] onto itself. Define the processes U. (t) and T. (t, e ) for 

0=<t=<l by 

[k(n)a (t)] [k(n)O O)l 

(3.2) U . ( t )=  ~'~ Z. 4 and T . ( t , e )  = ~ Y~4(e), 
j=l j~l  

where, in this corollary (and its proof), [x] denotes the greatest integer not 

exceeding x. 

Then the .finite dimensional distributions of {U~( t ) :0_  -< t _-< 1} converge as 

n ~ ~ if and only if the .finite dimensional distributions of { 7". (t, e ) : 0 N t ~< 1} 

converge when n -~ ~ followed by e --~ O. In this case, the limiting distributions are 

the same. 

N,k(n) COROLLARY 2. ..j=, Z. 4 converges in distribution as n--~o~ if and only if 

.ck(~j~, Y,,j(e). converges in distribution as n--~oc and then e--~0. In this case, the 

limiting distributions are the same. 

COROLLARY 3. S. = E~-3 ~ X..j - A .  converges in distribution as n --* oo if and 
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only if ~i=,vk(") y,j(e)q_~.k(,) z~j=l . converges in distribution as n--->~ and 

then e ---> O. In this case, the limiting distributions are the same. 

PROPOSITION B. Let {X,.j } satisfy uan and condition (i) of the main theorem. 

Let eo > 0 with +- eo continuity points of the function O specified in (i). Choose 

0<e_-<eo so that +-e are continuity points of O and define VC.,j(e), j =  

1,2 , . . . ,  k(n),  to be independent random variables, with llr ) distributed the 

same as X.,s (e). Then Ek~ ) [ I~.,~ (e) --/z..j (eo) +/z.,j (e)] converges in distribution 

as n---> ~ to the infinitely divisible law determined in the form (2.5) by Q~, 
% (eo) = 0, tr~ = 0, where 

O(u), lul>e, 

(3.3) Q,(u)  = O(e),  0 < u = < e ,  

O ( - e ) ,  - e  <=u <O. 

COROLLARY. Let {X,j}, Q, eo, and e be as in Proposition B. Write ~',,j(e) for 
k(n) " Y..s(eo, e) and let v,.s(e ) = E(I?..j(eo, e)). Then Ej=, [Y.,j(e)+ vn,j(e)] converges 

in distribution as n ~ ~ to the infinitely divisible law determined in the form (2.5) 
by O~, % (eo)= O, and tr2~ = O. 

PROPOSITION C. Let {X.,j}, Q, eo, and e be as in Proposition B and, in 

addition, assume that {Z.,j} = {X.,s -/~.,i(eo)} satisfies condition (iii) of the main 

theorem. Then E~q ) Y..s(e) converges in distribution, when n-->oo followed by 

e--> 0 through positive values such that +-e are continuity points of Q, to the 

infinitely divisible law determined in the form (2.5) by Q, ~/o(eo) = 0, and or 2. 

COROLLARY. Assume the hypotheses of Proposition C with an eo > 0 such that 

condition (ii) of the main theorem holds. Then Y ~  Y , j ( e )  k(,) . + Y.j=~ /z , j(eo)-  A~ 
converges in distribution, when n ~ oo followed by e ~ 0 through positive values 

such that +- e are continuity points of Q, to the infinitely divisible law determined 

in the form (2.5) by Q, 7(eo), and o "2. 

PROPOSITION D. Suppose {X,.s} satisfies the preliminary conditions of the main 

theorem and 
k (n )  

S . =  ~ , X , , j - A .  
j=!  

converges in distribution as n ~ ~. Then the limit distribution is infinitely divisible. 

Furthermore, if this distribution is determined in the form (2.4) by Q, y, and tr 2, 

then conditions (i), (ii), and (iii) of the main theorem are satisfied, with (ii) holding 

for every eo > 0 such that +- eo are continuity points of O. 
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Note that Proposition D gives the necessity part of the main theorem while the 
corollary to Proposition C, Lemma 17 of Section 4, and Corollary 3 to 
Proposition A yield the sufficiency. In connection with the assumed limit law 
necessarily being infinitely divisible, see Bergstr6m [3]. 

4. Preliminary lemmas and counterexamples 

We first consider the effect of centering on our various truncation conditions. 
We let {a.,j} be a triangular array of real constants such that 

lim max a . . j l=0.  

The following results are immediate. 

LEMMA 1. I f  
k(n) 

limsup ~ a. ,st< ~ 
n ~  j = l  

and {X.,j} satisfies stb, then {X.,i} satisfies stub if and  only i[ {X.,j - a.,i} does. 

LEMMA 2. A s s u m e  {X.a} satisfies stb. Then {X.,j} satisfies stub (eo) [or some 

eo > 0 i[ and only i[ {X.,s } satisfies stub. The same holds [or ssb (eo) and ssb as well 
as svb (eo) and svb. 

LEMMA 3. A s s u m e  {X.,j} satisfies uan. Then [or every r > 0 and e > O, 

max E ( I "  X.a (e ) l  )--->0 asn--->~. 
l~j_~k(n) 

In particular, l Ix.,j (e )l <= E( t  f(.,s (e ) 1), so that max,=<s~k~.) I ~.,s (e )I---> 0 as n ~ oo 
[or every e > O. 

Let  {X.,s} satis[y uan and stb. Then [or every eo > O, {X.,s - tz..j(eo)} LEMMA 4. 

satisfies stub. 

LEMMA 5. Suppose {X.a} satisfies uan and  stb. For 0 < e <= eo, let 

i [x,., - ~.,j(eo)]dP. v..j (e) = tx,~j-.,~j(~o)l-~l 

Then maxl_~j~k~.)t u.,j(e)l--->0 as n--->~, 

k(n) 

l imsup Z [v. . j (e)[<~,  
j = l  

k (n ) 2_.> 
and  hence Y~=~ [v..i(e)] 0 as n--->~. Consequently, if we write 
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2o.,(e) = IX. ,  -a~ ! =< }), 

k(n) k(n) 

0<= ~, [E( [2 . . , (e) ]~- ) -var (2 . . , (e) ) ]  = ~'. [v,,.,(e)]:~O a s n ~ .  
j= l  j=l  

LEMMA 6. Let {X,4} satisfy uan and stb. Then {X,.j} satisfies svb if and only if 

{X,.j -/~..j(eo)} satisfies ssb. 

We now examine the necessity of the truncation conditions in the independent 

u a n  c a s e .  

LEMMA 7. Assume {X..j} satisfies uan; for each n, X~,. X..2," ",X.,k(.~ are 

independent; and there exist constants {A.} such that the sums 

k ( . )  

S . =  ~ X . j - A .  
j - I  

converge in distribution as n ~ oo. Then according to the classical results (see 

Gnedenko and Kolmogorov [5]), for every eo > 0 such that + e, are continuity 

points of the function O associated with the limiting infinitely divisible law, 

k(n) 

= 5'. A .  
j - I  

converges as n- - -~ ,  which is equivalent to saying that ~;5'~'[X..j-I~.j(e())] 

converges in distribution as n ---~oo. Thus, again by the classical results, we see that 

{X.,j -/~.j(e0)} satisfies stb and ssb. But this is equivalent to {X..j} satisfying stb 

and svb. Furthermore, {X.j} satisfying uan and stb implies {X.,j - I~..j (e,)} satisfies 

smb and when independence is considered we also get that both {X..I} and 

{X.j -/~.,j(e0)} satisfy sin. 

EXAMPLE 1. For a counterexample to the necessity of smb and ssb for {X..,}, 

we suppose that for every positive integer n, X.,h X..2, �9 �9 ", X... are independent 

and normally distributed random variables with variance n -~ and mean 

I~.,j = E(X., j)  = flog (n + 1)] I (_  1)~]-~, 

for j = 1 ,2 , . . . ,  n. Note that 

max [/~.,j I = flog (n + 1)1-�88 ~ 0 as n ~ ~. 
l< j<n  

By Chebyshev's inequality, P({ IX . , j - t~ . . j I>e} )  <= e 2n-,, j = l , 2 , ' " . n ,  and 
hence {X..j} satisfies uan and stb. Since E~'=~ [X.j -/~..j] has an N(0, 1) distribu- 

tion and 
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n n 

E/s . , ,  = [log (n + 1)1-�88 ~., ( -  lyj--'-'--+ 0 
j = l  j=t  

as n ~ ,  

we see that E~:, X.,j converges in distribution to N(O, 1) as n--+~.  It is easy to 

show that VT:, E([ f f . . i ( e ) ]~ - )~  as n ---*~ and ET:, !/z..~(e) j---~ ~ as n ---> ~, even 

though E;'=~/x..j(e)~ 0 as n ---> ~. Thus we see that the convergence of E;'=, X. j  is 

equivalent to the convergence of YT=, [X . . i -  p...i(e)], with even the same limit 

distribution, and yet the conditions stub and ssb are not satisfied for {X.,i}. One 

last thing to observe is that despite the fact that E•=, E([fC.,i(e)]2)-+~ as n ~ o r  

and YT:, [/z..j(e)] 2 ~  as n---~ ~, we still have Y;':, var (X..i (e ))---* 1 as n---> ~r 

We next want to consider the effect of condition (i) of the main theorem, a 

condition which implies stb. 

LEMMA 8. If max,~izk<.)la.,i]--+0 as n--+~, then {X.,/} satisfies ( i ) f o r  a 

given function O if and only if {X.,j - a.,i} satisfies (i) for the same Q. 

LEMMA 9. Let {X.,i} satisfy uan and condition (i). Use the notation of Lemma 

5 and assume that +- e are continuity points of Q. Then 

k(n) 

E !  o.,(ell r--+o 
j= l  

a s  n -----> oo, 

If  +- eo are also continuity points of Q, then for 0 < e < e., 

and 

k(n) I Pn.i(e ) - + -  u d O ( u  ) 
j= l  e <lu[_--<ell} 

a s  n ----> oc 

k(n) 

E F I--> 0 
j=l  

a s  n ,----> or 

LEMMA 10. Let {X.,j} satisfy uan and condition (i). Again use the terminology 

of Lemma 5 with the assumption that +_ e are continuity points of Q. Then 

k(n) 

~'. ! E ([Z.., (e/12) - var (X.,, (e ) ) j -+  0 
j= l  

a s  n -...-> oc 

and hence 

k(.) 

s 
j=l  

! var (Z..j (e)) - var ()~;.,j (e)) r --+ as n ~oc.  

LEMMA 1 1. If  {X.,j} satisfies stb and sin, then for every r > O, every positive 

integer k, and every 0 < e <= eo, 
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and 

k(n)-k 

lim j~ 

k ( n ) - k  

lira s~ 

f X.,~+~ (eo) f dP = 0 
IX,,.iF>~) 

fl I ^  ' X..,(eo) I dP = O. 
Ix..j+k!>~) 

Next, by applying Hftder ' s  inequality, first for expectations and then for sums, 

we see that if k and s are non-negative integers, r~, r2, and r3 are non-negative 

real numbers, and r = r~ + r2 + r3, then for every e > 0 

(4.1) 
k(n)-k-s k(n)  

E E(I ~ " ' "  " ^  <= xo.,(e)) Ixo.,+,(e)l'lxo.,+,+,(e)l'9 Y. E(lR..,(e)['). 
i = l  j= l  

Furthermore, if {X,.j} satisfies ssb, then 

k(n)  

K2(e ) = l imsup ~ E ([X.., (e)]2) 
/=1 

is non-increasing as e decreases. Hence if we also assume r > 2, then 

k(n) 

(4.2) lira lira sup ~ E(I ,~j(e)l ) < iim e'-2K2(e) = O. 
~ 0  ~ j = l  e~O 

LEMMA 12. Assume {X..j} satisfies stb, ssb, and sin. Let k and s be non- 

negative integers, at least one of which is positive ; let r~, rz and r3 be non-negative 

real numbers, at least two of which are positive, with r = rj + r2 + r3, and suppose 

that either (a) r > 2 or (b) r = 2 and K2(E ')---> 0 as e ' --> O. Then for every e > O, 

k ( n ) - k - s  

lim ~ E(IR..s(e)]',[X..,+k(e)[',JR..s+k+.(e)]'~=O. 

The next result, which is a direct extension of Lemma 5, involves covariances 
and product moments. 

LEMMA 13. Suppose {Pf,.j} satisfies uan and stb. Then [or every positive integer 

k and O < e <= eo, 

k(n)-k 

E 
j=l 

I E(2o , , ( e )2 . . ,+ , ( e ) ) -  coy (2~.,(e), 2 . ,§  

k(n)-k 

= Y~ r~.. ,(e)*,. . , .k(e)l--,0 as n--,o~. 
j=l 

LEMMA 14. Let { X,.j } satisfy uan and stb. Then for every positive integer k and 

0 < e  _-<eo, 
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k(n)-k 
lim sup 

n ~  /ffil 
I E (2. . ,  (~)2. . ,+~ (E)) - coy (~:.., ( e ) ,  ;R.., § (e ) ) !  < ~- 

(4.4) 
I k(n)-I k(e)-k I 

= 2 .~§ E c~ 
k 1 /ffil 

=<4( [~b(n, k)]~ ~ var (Z,~i). 
\ kffiK+l ]ffil 

LEMMA 16. Suppose {X,,j} is ok-mixing with coefficient satisfying Ibragimov's 
condition. Assume that, for j = 1 ,2 , . . . ,  k(n), n = 1 ,2 ,3 , . . . ,  Z.., is measurable 
with respect to ~(X,. ,)  and E([Z.,s] 2) < ~. Then 

lim sup ~ var (Z.a) < ~ implies lim sup var Z,~, < ~ 

LEMMA 15. Let {X.,,} satisfy uan and condition (i). Assume +__ e are con- 
tinuity points of Q. Then for every positive integer k, 

k(n)-k 

~. I E(Z.,,(e)2..,§ as n---~oo 
i=l 

and hence 

,c~-k Icov(2o.,(e),2~,+k(e))-cov(2..,(~),2..,+~(~))f--,o asn--,~. 
i=l 

Finally, let's consider what happens if {X.,,} is 4)-mixing. We need the 

following basic result; see Billingsley [4]. If 1 N p _-<~, p - ' +  q - ' =  1, and for 

some ], l=<j<j+k<=k(n) ,  we have Y is measurable with respect to 

~(X~,1,-" ", X..~), Z is measurable with respect to ~(X~,i§ ", X..,~.)), II Y lip < 

o0, and II z II, < ~, then 

(4.3) f E ( Y Z )  - E( Y)E(Z)]<= 214,(n, k)] '/p 1] Y lip II z I]q- 

Note that II x II, = [ E ( l X  I')1'" for 1 =< r < ~, with II x I1~ = ess sup I x  I- Further- 
more, (4.3) applies only when Y and Z are both real valued. If one of these 

functions is complex valued, the inequality holds with 2 replaced by 4. If both are 

complex valued, the inequality holds with the factor 2 replaced by 8. 

Now suppose that for j = 1 ,2 , . . . ,  k(n), Z,.~ is measurable with respect to 
~ (X..,), i . e .Z ,  a = g.a(X..,) for some Borel function g..,, and E([Z..,] 2) < oo. Then 

by (4.3) and the Cauchy-Schwarz inequality, for 0-<_ K =< k ( n ) -  2, 

i ( ~ , . ) )  k,.) K ~.)-k t var j~Z.. j  - i__~var(Z,a) -2  ~, ~] cov(Z,.,,Z..,+k) 
"ffi k~ l  jffil 
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and k(n) (k(n) ) 
lira ~ var(Z~,j)=0 implies lim var ~ Zn,j =0.  
n ~ X  j = l  n ~  

Using Lemma 10, Lemma 15, and (4.4) we obtain our last result. 

LEMMA 17. Suppose {X,,j} is &-mixing, with coefficient fulfilling Ibragimov ' s 
condition, and satisfies uan, svb, and condition (i). Then for 0 < e <= e, where +- e 
are continuity points o[ O, we have 

I var ( i~' 2~,,(e)) - var ( k2' J~n.,(e )) 1 ~ 0 ,=. a s n - - ~ .  

Consequently, for any ec, > 0, {X,,j} satisfies condition (iii) for cr 2 >= 0 if and only if 
{X,,j-/x~,j(e,,)} satisfies condition (iii) for the same 2. 

We conclude this section by examining the gap in Bergstr6m's proof. The 

problem arises when he attempts to construct a Gaussian random vector 

~',,j(K,e), j = l , 2 , . . . , k ( n ) ,  with mean vector the same as 2,,j(e), j =  

1 , 2 , . . . , k ( n ) ,  and with 

(4.5) E(Y~.,(K, e)Yn.,_k(K, e)) 

={E(2o,~(e)2.4+,(e)), l<=k<=K, j+k<=k(n) ,  

E(X.,j(e)X.,j-k(e)), other j and k, O<=k <j<=k(n). 

But, in fact, the supposed covariance matrix arising from this procedure need not 

be non-negative definite and hence the f',,j(K, e) need not exist. 

EXAMPLE 2. Let k(n)=n_->3. Let {Xj} be a sequence of independent 

random variables, each taking the two values • 1 with equal probability. Let 
(Y, Z)  be a random vector, independent of the {Xj}, each component of which 
has the same distribution as an X~, but with P({ Y = 1, Z = 1}) close to i/2, say 

_1 _I _1  

7/16. Let X~.j=n ~X~ for j = l , 2 , . . . , n - 2 .  X,,,_~=n ~Y, and X , , , = n  ~Z. 

Given e > 0, we assume that n~e => 1, so that )(,.j(e) = X,,j, ] = 1 ,2 , . . . ,  n. Then 

the means of the J~,j(e) are all zero and the covariance matrix has for its lower 

right-hand 3 x 3 submatrix 

0 

n 1 3/4 
3/4 1 

with the remainder of the matrix consisting of zeros except for n -~ on the main 

diagonal. 
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Now suppose K = 1 and consider the covariance matrix proposed for 

Y,4(1, e). The only change will be in the first off-diagonals, where all entries 

except the lowest are obtained from our original covariance matrix by shifting 

the entries up by one position and the lowest remains as it was. In other words, 

the proposed covariance matrix will have for its lower right hand 3 x 3 submatrix 

I i  4 3/4 0 1 n i 3 l 3/4 

3/4 1 

with the remainder as before, namely all zeros except for n -~ on the main 

diagonal. But this matrix is clearly not non-negative definite and hence cannot be 

a covariance matrix. 

5. Proofs of Proposition A and its corollaries 

First note that since {X,4} is assumed to satisfy the preliminary conditions of 

the main theorem, {Z,,j} satisfies uan, stb, smb, ssb, and sjn, as well as being 

4~-mixing with coefficient fulfilling Ibragimov's condition. We define 

%(v,n,e)=E exp i~_ v,,,~Y,,m(e)+ ~ V,,mZ,,,. 
1 m = j + l  

for j = 0 ,1 , ' - . ,  k(n), with 

aj(v, n, e) = r n, e ) -  Cj(v, n, e) 

for j = 1 ,2 , . . . ,k (n) .  Thus we want to prove that, for each V > 0 ,  

(5.1) 

where 

lim limsup sup [S(v,n,e)] =0, 

k ( n )  

S(v, n, e) = ~ Aj(v, n, e) 
1=1 

For 1 < k < s N [ k ( n ) -  1]/2, define 

k(n)-s 

T(v,n,k,s,e)= ~ Aj(v,n,e). 
j=s+l 

Observe that, at this point, k appears only as a variable which determines the 
range of s. Now 
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I T ( v , n , k , s , e ) - S ( v , n , e ) l < = 2 s  max IAj(v ,n,e) l  
l ~ j~_k (n )  

I A,(v, n, e)[ =< E(] exp [iv,,.iZ,,.i] - 1 I)+ E([exp[iv,,.y,,.i(e)] - 1 l) 

<= V(E([ Z,. , (e)1)+ [E([ Z,.,(e)[:)]�89 4P({ l Z,., I > e}), 

Isr. J. Math.  

for l] v 11 ~ V and hence, for every e > 0, V > 0, 

max sup [Adv, n,E)l---,0 
I~-j~_k(n) [[v [.~ V 

by Lemma 3 and uan. Consequently, 

a s  ?/...-.~ o~ 

lim sup I T ( v , n , k , s , e ) - S ( v , n , e ) l = O  
n ~  Ir~lT~ v 

for every s > k => 1, e > O, V > O. Hence, it suffices to prove that 

(5.2) iim limsup lim sup lim sup sup [ T(v, n, k, s, e ) I = 0 

for every V > 0. 

Now suppose we can find a positive integer R and, for r = 1 , 2 , . . . , R ,  a 

collection {A,.i(v, n, k, e)}, such that, letting ~u(v ,  n, k, e)  = At(v, n, e), 

k(n)-s~s+ r lim l imsup limsup limsup sup ~ [A, . j (v ,n ,k ,e) -A,_ , . j (v ,n ,k ,e)]  = 0  

(5.3) 

for all V > 0  and r = 1 , 2 , . . . , R .  Then it suffices to prove that, for all V > 0 ,  

(5.4) lim l imsup limsup limsup sup AR.j(v,n,k,e)  =0 .  
e- - ,O . . . .  [[ul]~ V j = s +  I 

This step by step approximation can be accomplished in a variety of ways. By 

making small steps, R becomes larger but each approximation step is easier to 

verify. We let R = 8 and define 

8.. i =A , . j ( v ,n , k , e ) -A ,_ t . i ( v ,n , k , e )  for r = 1 ,2 , . . . , 8 ,  

in the manner listed below. To simplify the notation we write 

At = E exp i v..mf'.,.,(e) = E(exp[iv.,m2..m(e)]), 
I m = l  

Bj = E(exp[iv,~2,~j(e)]), G = E exp i ~ V.,mZ,~m , 
r e= j + !  
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r - t  ^ 

D~= E(exp{i~=v.. , .Y.. , .(e)])  and Er.., =v..rv...,E(Z.,r(e)Z..,.(e)). 

Thus we have z~r(v, n, e) = Ar(DrC~-,- Dr.,BrCj) and can define 

,( ,~, ,) + iv,..r,~,,.r(e 1 + i ~ v,,.,.i~..,.(e 
m = r + l  

k(n) 

- ArDrCi_., 

{ ~ ( '+' . , , ' , . ,  ) 
82.r=A,DrE io..rZ,,.r(e) l + i  Z o,,,.Z,,,.(e))exp(i Z o,..,.Z,..,. 

r e = r +  I ' , / \ m=r+k+l 

-ex~t'.L ) 

r+k k(n) 

i [ ( k(n) 84.r =A,B,D,E ([v..,Z..r(s)12[2) exp i 2 
m = j + l  

o,,-Z~,-)-exp(i '~i~ o~.Z~.) ] I , 

~,,~A,B,D,~/[~,~ ~- / ~ " '  exp,, ~ onJ..)] 

• iv,~r2...j(e) l+iv..rZ..j(e)/2+i ~ v.,,.Z..,.(e) , 
m = r + l  

/ + k  

87.r = ArBiC~ { Dr§ Dr [1 + io,,.rE(;Z,,,,(e ) ) -  E(to,,.,;Z,,.r(e )]2)/2 

- ~ v..rv...,cov(Z,~r(e),Z..,.(e , m =]-k 
j-1 

8.., = A,B, GD, ,~= ._~ v.~v,~,~E ( Z,~ ( e ) )E t L.m ( e ) ). 
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Adding these steps and using 2,,.j(e){exp [iv.42..;(e)]- 1} == 0 gives us 

k 

A~.;(v,n,k,e)=A(v,n,e)+ &.; = A;B, QDj ~ (Ej_mj - E~.;+,.). 
r = l  m = l  

Note that Bergstr6m's proposed Gaussian components, as described in Section 

4, were designed precisely to make An.j vanish identically and this appears to be 

necessary when the estimate 

Z an., <= Elan., t~ Z E,_,~.,- ~,.,+,~) 
/ = s + l  ] = s + l  / = s + l  = 

is used. Nevertheless, as we shall see, a summation by parts will allow us to 

establish the required limit: 

k(n)-s  k k ( n ) - s - m  k k(n)-s  

. 2  As,i = 2 2 Ai+,.Bi+mfJ+,,Oi+,,~EJ4+,,~ - E 2 A, BiCjD;Ei.;*,, 
l = s + l  m = l  j = s + l - m  m = l  / = s + l  

k k ( n ) - s - m  

= 2 2  
m = l  j = s + l - - m  

[ A;+,.13;.,. G +,.Di+m - AjBjGDj ] Ei.i+m 

k k k(n)-s 

+ 2 2 A;B, CjDiE, J +,. - 2 • A,BiCjD, E,.;+,," 
m = l  j = s + l - m  m = l  j = k ( n ) - s - m + l  

Now f E . . . ,  I -- v2 II 2.., (~)[12 II 2 . . . , .  (~)It= for II v II < V and since Ai, B;, ~ .  and Dj 
are all characteristic functions they are each bounded in absolute value by one. 

Consequently 

(5.5) sup AjBjQDiEj.i+,, <=k2V 2 max E([2..i(e)]2)---~0 
]lv~l-< ~/ m = l  j=s+l--m I<l--<--k(n) 

as n ~ ~ for every s > k _>- 1, e > 0, V > 0, by Lemma 3. An identical estimate 

holds for 

sup t ~  k~.)-~_ AiBjQDjE.+,.. . 
Ilvll~ v m = l  j = k ( n ) - s - m + l  

Furthermore, 

k ( n ) - s - m  k(n) 

Y~ Iz,.,+m I_ -< v ~ ~ ~([2~ 
j = s + l - m  j = l  

for ]l v 11 < V, using the Cauchy-Schwarz inequality, and this sum is bounded as 

n ~ ~, for s > k => 1, e > 0, V > 0, by ssb. Hence it suffices to prove that, for 

=1 ,  s > 0 ,  V > 0 ,  every s > k = > m  > 

(5.6) max sup [ Aj+,~Bj+,.Cj.mDj.m - AjBjCjDj I---~ 0 
I~-j'<k(n ) -m IMI_<_V 
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as n--->oo. But 

I Aj+.,Bj+,.Cj+,.Dj+,. - AjBjCjDj I 

< [ Aj+,. -Aj  f + [ B,+., -Bj  I+1 G+~ -C,  I+ ! O,§ -Oj  I, 

so it is enough to consider each term separately. 

j+m-I ) 
sup]Aj+m-Ajl<=sup E( E [exp[iv..,Y..,(e)]-ll 
IMI_-<v IMI=<v \ ,=j 

_-<2m max P({IZ.jI>e})---~O 
I<=j<=k(n) 

as n--~ ~ by uan. Similarly, 

sup I B j+,. - Bj I_- < sup {E(I exp [iv..j+,.f'..,+,.(e)l - 1 l) 
IMp= < v IMI_ < - v 

+ E(I exp [iv.,,Y..j(e)] - 1 I)} 

-<_4 max P({Iz.jl>~}). l<j~k(n) 

Also, 

sup I Q+m - Q l < sup E ( J~"~ l exp (iv.,,Z.,,)- 1])  
IMl~v D I [ ~ v  \ ~=j4-1 

<=m[V max E( I .Z~ . , ( e ) I )+2  max P({IZ~,[>e})] 
l<--i~k(n) l<=j<k(n) ' 

-->0 

as n - - - ~ ,  according to Lemma 3 and uan. Finally, 

sup 1D~+,, - Dj IN sup E l exp [iv.,,f'.,,(e)] - 11 
IMI= < v IMI_- < v , =r 

<-mV max E(I  Y~,,(e)l)_-<mV max ItZ.,(E)]t~ 
l----<jNk(n) lNiNk(n) 

-->0 

as n ~ ,  again using L e m m a  3. Therefore,  we have the first result we are 

seeking, namely 

[ k(,O-s ~ 0 (5.7) sup ~ A~.~(v,n,k,e) as n ---~ ~ 
IMl<_-v j = ~ + ]  

for every s > k _ - > l ,  e > 0 ,  V > 0 .  
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It  remains  to verify the legit imacy of each  of our  approx ima t ion  steps &.,, 

r = 1, 2 , . . . ,  8. We  begin with the expansions,  valid for  real 0, 

t e'~ _ 1 - iO + 02/2 ] N I 013/6, 

(5.8) l e'~ _ 1 - iO l<lo  12/2. 

vi+k v.,,.Z..,. (e )  in the We  let 0 be  v.,jZ..j(e) in the first of these and then equal  --.,=j+l 

second to obta in  the es t imate ,  valid for  every  V > 0, 

I k(n)_~s~s ] 
sup .= 
IMt --<v 1 1 ~l,] 

k(.)-s { 
Z V3 E(12..,(e)l")/6 

j=s+l 

+ E(12...,(e)l L.,=,+, 

k(n) 
<= (V3/6) ~ E(I 2.,,(e)I ~) 

k k(n)-m 
+(V3/2) 2 Z E(IZ,,(e)I IZ+,.(~)() 

m = l  i = |  

k-I k--r k(n)--m-r 
-t- V 3 2  2 Z E(t2.,,(e)2..,+,.2.,, . . . .  ( e ) l ) .  

r=l m=l j=l 

By (4.2) the first sum approaches  zero as n ~ ~ and then e ~ 0 and does  not 

depend  upon  ei ther  s or  k. The  second and third sums do not  depend  upon  s 

and,  for  each k _-> 1 and e > 0, they approach  zero as n--~ ~,  by L e m m a  12. 

k(2-s ~2,j k(n)-s [ j+k 
sup <=V(l+kVe) ~ E(12.,j(e)[ 
IMI<_-v j = s + l  j = s + l  \ m=j+l 

lexp[iv.,,.2.,,.(e )l- 11) 

k k(n)--m ~{ 
< - 2 V ( l + k V e )  Z Z 12.,,(e)ldP---,o as n - - - ~  

m=l j=l jZn,i+ml>e } 

for  every  s > k _- 1, e > 0 ,  V > O  using L e m m a  11. 

sup Z . . . .  
Ipolt~v 63,j  = sup E (Bj -exp[ iv . ,2 . j (e )] )exp  i ~ v. , .Z. , .  

i =  i=  1 IMl_-<v m=j+k+ l  

+ ~ sup E (Bi-exp[iv. . i2.4(e)])  exp i ~'~ v.,,.Z.,., 
] = ~ + l  IMl<_-v re=j+1 

k(n)-s 
+ v[1 +(1+2g)v~/21 2 E(I exp [i~..,2o.,(~)1-1 t)E(I 2..,(~)1). 

j=s+l 
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We deal with each of these sums separately. By means of (4.3), for p = 1, q = % 

and complex valued random variables, the first sum is dominated by 

kln)-s 
2 sup 86(n,  k + 1)E(I exp [iv.,i2,~i(e)]- 11) 

i=s+l IMl~v 

k(n) 
=< 16~b(n, k + 1) ~'. P({I Z.,j [ > e}). 

i=1 

This sum does not depend upon s nor V and, for every e > 0, it approaches zero 

as n--+ ~ and then k--+ % by stb and the definition of ~b-mixing. 

The second sum is dominated by 

sup I B j - l l E  lexp(iv..,.Z.,,.)-ll 
/=s+l llull<_- V m I 

k(n)-s / ~ ) 
+ ~ supE{lexp[iv.,,Z.4(e)]-ll lexp(iv.,,.Z.,.,)-ll 

j=s+l IIvI[<~V \ m=i+ l  

k k(n)-m 
<= ~ ~ 2P({IZ,~Jl>eI)[VE(12.J+,.(e)l)+2P({IZ..J+,.l>e})] 

m=l j=l 

+ 2V  [ Z./+,,,(e) [ dP 
m=l ,/=1 IZn,/l>~} 

+4P({I z.,, r> e, f Z.,,+., f>  e})] 

which approaches zero as n ---*~ for every s > k ==_ 1, e > 0, V > 0, because of 

uan, stb, sin, Lemma 3, and Lemma 11. The third sum is the simplest, since it is 

bounded above by 

k(n) 

2V[1 + (1 + 2k)Ve/2l Z P({ I Z.,, I>  e})E(I 2. , j(e)I) 
i=l 

and this approaches zero as n ~ ~ for every s > k => 1, e > 0, V > 0 by stb and 

Lemma 3. 

I k(rt)-s I k k(n)--m 
sup Z ~4,j ~ (V2/2) Z Z 
TI~II_-< v 1=s+1 m=l j=l 

vE(I I 

+ 2 [  > t;Z,,,i(e)]2dP] 
" J{IZ,~i+=l El 

which approaches zero as n --+~ for every s > k => 1, e > 0, V > 0 by Lemma 11 

and Lemma 12. 
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k(n)-s 
sup i=~+~ 65,j 

IIuIt_<- v I([ (k,n, 
<= ~ sup E G+k--exp i 

j=s+l IMI----<V m = / + k + l  

+ ~ sup E C ,+k-exp  i 
/ = s + t  II,~ll<_- v m = j + k + t  

+ ~ sup E C/+k-exp  i Z v..,.Z.,,. ~ v.,sv...,;Z..i(e);Z....(e) 
/ = s + l  ]loll<---- V m=j+k+l m = j + l  

Again we shall deal with these sums one at a time. The first is dominated by 

sup E v.,iZ.,s(e) G+,.-'- G+,. 
j = s + ]  IIv[[<=V m = k + l  

k(n) 
- e x p  i S ~.~ 

t=j+m+l On I 
k(~-s k(n)-j 

= sup ~ 4[4~(n,m)]']lv.,,2.,,(e)l]~llexp[iv.,j+,.z.,j+.,]-lll~ 
j = s + l  ]]vlF~v m = k + l  

k ( n ) - - k - l  k(n)-j 
.Y_, 4vll2o.,(e)ll~ ,Y__,, 

j = k + !  m ~ k + l  
[4,(~, m)]'{ v II Z.,+,,(~)II~ + 2[P({[ z~.,+,. I> ~}]~} 

k(n)--I  

_-<4V 
m = k + l  

k (n )  ^ 2 2 

[~b(n,m)] �89 V 2 E([2o,,(~)1~)+2 ,~ E([z,,,,(~)]) 
j = l  "= 

x ~ p({Iz.., I> ~} ~ 
j = l  

for every e > 0, V > 0, using (4.3) for p = q = 2 and one factor complex valued. 

But the last sum does not depend upon s and approaches zero as n --* oo and then 

k ~ ~,  according to stb, ssb, and Ibragimov's condition. 

The second sum can be estimated by 

k(n )  

2V~6(n, k + 1) ~ E( [Z , i ( e ) ]  2) 
j = l  

for every e > 0, V > 0, this time using (4.3) for p = 1, q = ~ with one complex 

factor. This expression does not depend upon s and tends to zero as n ~ oo and 

then k ~ ~,  using ssb and the definition of ~b-mixing. 

For the third sum we get the bound 
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I sup 2 v~ +k - G+s-, + G+.-, 
/=s+l  IM}_-<v m = l  

/ k(tQ \ ( [ j+s-I 
- e x p ( i  ~'. v.,,Z..,j exp i 2 

\ r=j+s / r=j+k+l 
I 

k(nJ-s k s - I  

--< V2 2 Z Z sup E(lexp(iv..j+,Z.,j+,)-l[)E(lZ.,j(e)Z..j+,.(e)[ ) 
j = s + l  m = l  r = k + l  IIv[l~V 

k(n) x k s - I  

+ V 2 ~. ~ ~ sup E(lexp(iv.,,.,Z.4+,)-I 112..,(e)2o,,+,.(e)l) 
j = s + l  m = l  r = k + l  tlvH<=V 

k(n)-s k 
+ V2 2 2 4r 

j = s + l  m = l  

= max E ( [ Z ; ( e ) t ) + 2  max P({IZ.,;l>e}) < s k y 2  2 E ( [ Z 4 ( 6 ) ]  2)  Vl__<i=~k(,, ) , 
j=J  i_-<j_-<k(n) 

k ~-I k(n)-r 

+v32 2 2 
m = l  r = k + l  j = l  

E(t Z,(~)Z,;+m (e)Z,,§ 

s-I k(n)-r I 
+ 2V2ke 2 "2  IZ . , , (e ) ldP 

r=k+ l  j = l  jZ=.j+rl>E } 

k,n  I )] +4kV2 2 E(['~-,,(e)] 2) max &(n,s-m . 
j = l  I<=m~=k 

Now with the exception of the last term, each of these sums approaches zero as 

n ~ ac for every s > k _-> 1, e > 0, V > 0, via uan, ssb, Lemma 3, Lemma 11, and 
Lemma 12. The last sum, obtained from (4.3) with p = 1, q = ~ and one complex 
factor, approaches zero for every k => 1, e > O, V > 0 as n --> ~ and then s ----> ~,  
again using ssb and the definition of 4~-mixing: 

k(n)-s k(n)-x k ( 

sup =~+ a~., _-< =Z sup 2 Iq+m-,-q+m!/VtE(Z..,(e))l 
Hvtl<v j I ~+1 IMl_<-v ,,,=1 ' 

k 
+ V2E([Z.. j (e)]2)/2+ V 2 

m = 1 

E (2.,, (e)2~,,+,. (e)) I } 

<= k[V max E(IZ..j(E)I)+2 max P({IZ.j ] >  e})] 
I<=j<k(n) I<=j~=k(n) " 

k(n) k(.) } 
x V 2 IE(JZ.,i(e))t+ V2(l+2k)/2 ~ E([Z,,,i(E)] 2) 

j=l j=l 

~ 0  
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as n ---> ~ for every s > k => 1, e > 0, V > 0 by Lemma 3, uan, smb, and ssb. 
In the next step, we deal with the Gaussian components { ~'..j(e)} and so we 

need the relation, valid for (X, Y) with a 2-dimensional normal distribution, 

(5.9) E(exp [i(X + Y)]) = E(exp (iX))E(exp ( iY))exp [ - c o v  (X, Y)]. 

Consequently, 

Dr+, = DjE(exp [iv..j~/.a(e )])exp - =, v..jv..,, cov (Z,.,j(e), Z.,,.(e )) 

and thus 

sup 67,s 
Ilvtl~ v j=s+l 

k(n)-s [ j - I  

~ sup exp - 
j=s+l Ilvll~- W m=j-k 

v.,jv.,. ,  coy (2..~(~), 2.,,~ (~))] 

I 
+,=~+,Z flopl=,'sup E(exp[iv . f i%(e)])exp - , . ~ _ v . , A , .  cov (2,~j (e ), 2.,,. (e )) 

- [ 1 -4- iv..iE (;Z,~j (e)) - E ([ v,~i~, (e)]2)/2 

" ]1 - Y~ o . , j o . , , ,  c o v  ( 2 . , j ( ~ ) ,  2..,.(~)) . 
m =j-k 

Next, observe that 

I r sup v.,sv..,.cov(2.a(e),Z..,.(e)) <--kV 2 max E([;Z.,s(e)] 2) 
[Iv[I~V m = j - k  . l ~ / ~ k ( n )  

and 

j -k-1 I sup 2 v.,,v.,,, cov(Z. . , (e) ,2 . . , . (e))  
I lvl l :~ v m=l 

k(n)-I 
_-< 2 V 2 ' m._ax E ([,~, (e)]2) ,~ ~§ [6 (n, m)]~, 

with each of these bounds approaching zero as n ~ oo, for every s > k > 1, e > 0, 

V > 0, using Lemma 3 and Ibragimov's condition. Consequently, for n suffi- 

ciently large, the first sum in our estimate cannot exceed 
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exp{kV2 
k(n) "~ 

x4V 2 ~ [~(~, ~)l~ II ~..,(~)II~ II ~..,-~(~)II= 
j~k+2 m = k + l  

~ e x p {  kV2,-~s_~k~.,max E([Z~,,(e)]2)/ 
k(n)-I k(n) 

x4V 2 ~ [~(n,m)]" ~ E([2~,de)l ~) 
m=k+l j=l 

which does not depend upon s and approaches zero as n -+ oo and then k -~ o% 

for every e > O, V > O, by the above remark, ssb, and Ibragimov's condition. 

For the second sum we temporarily introduce the notation 

S, = iv.,jE (Z.,j (e )) - E ([ v.,jZ..j (e)12)/2, 

j-I 
s~ = - ~ vo,~v.., cov(2o,(~) ,2~(~)) ,  

m =i-k 

E, = E(exp [iv~.j~'..j(e)]), G = exp &, 

R , = I E , - ( I + S , ) I  and R~=IE~- ( I+&)r .  

x.k(.)-. [E,E2 - (1 + S, + S2)l, where Then we need to estimate -~j=s+, suptt~ll~v 

[E,E2-(I + S, + S2)}<=R2+II + S2tR, +FS, S2I, 

since [E,[ ~ 1. Now since $2--* 0 as n --+ 0% we see that for n sufficiently large and 

IIo11~ v 

R2<=I&] ~ <- kHv4E([Z.I(e)] 2) max E(I.~.,,(e)]2). 
' l < j ~ k ( n )  

Furthermore, for II" I{--< V 

R, <= V~E(I 9..,(e) p) 

=< 4 V3IE(! ~'.., (~) - u..,(e)13) + I E(~.d~))13] 

<-_ 4 V3{4[E([2,~,(e )]~)]~I(2#)~ + { E(~,(e))13}. 

Consequently, for s > k = 1 ,  e > 0 ,  V > 0  we see that as n---~oo 

k ( n ) - s  

E sup IE, E2-(I+S,+S2)I--~O, 
i = s + t  IMI-~ v 

where we make use of Lemma 3, smb, and ssb. 
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l k(n)-s I k(n) 
sup ~, 6~.j <=kV" max E ( [ 2 , j ( e ) f ) Z  JE(Z,,j(e))I 

Itvll_-< v j=s+J l~j<~k(.) j= t  

which approaches zero as n--*oo for s > k = > l ,  e > 0 ,  V > 0 ,  according to 

Lemma 3 and stub. This completes the proof of Proposition A. 

Corollary 1 is implied by the assertion that for every positive integer M, every 

partition 0 = t,, < t, < -  �9 �9 < tM _-< 1 of the unit interval, and every V > 0, we have 

lira limsup sup E exp i vm[U.(tm)- U.(tm_,)] 
E ~ o  Plvlt~ v t 

where v = (v,, v2,.. ", vM) and ]] v II = maxl~m~M I v,~ I- This follows immediately 

from Proposition A if we define v../= v,~ for [k(n)O~(tm-l)] <j  N[k(n)O.(t,~)] 
with v.,j = 0 for other values of j. Corollary 2 is a special case of this, letting 

M = 1 and tt = 1. In Corollary 3 we have just added the same centering term to 

each of the sums we are comparing. 

6. Proofs of the other propositions and their corollaries 

PROPOSITION B. {lYr (e)} satisfies uan, since for u > 0 

(6.1) e({I vc;g-,,(e) l > u}) = I 

P({JX,.jl> u}, Jut> , 

t P({jX..j 1> e}, 0<luI_-<e.  

Similarly, we see that { l,~'.,j(e)} satisfies condition (i) of the main theorem for 

the function O,. Furthermore, for 0 < e ' _  -< e, 

f --< = o 

and hence 

k(n) 
(6.2) lira l imsup • Var[W,j(e)I({t  l,(/,j(e)l =< e'})] =0 .  

e ' ~ O  j = 1 

Consequently, by the classical theorem for sums of independent random 

variables, 

k(n) [ ] j~ 17Vn'i(e ) -  f t, -w,.j(~)l~_~o} lTV'i(e )dP = k~) [ lTVn'J(e )-- lt"a( e~ + " ' /(e 

converges in distribution as n ~ oo to the infinitely divisible law determined in 

the form (2.5) by O,, 5', (Co)= 0, and cr~ = 0. 
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COROLLARY. By means of Lemma 3 and Lemma 8, we see that 

{ X , j -  p.,.j(eo)} satisfies uan and condition (i), with the same O as for {X,.j}. 

Hence E~'ll ['l?.j(e ) -  v,,j (eo)+ t,,., (e)] converges in distribution as n ~ oo to the 

infinitely divisible law determined in the form (2.5) by Q~, % (e,,) = 0, and o'=~ = 0. 

However, by Lemma 9, 

k(n) r kin) 
E v~ = E l v~ as , , - - , ~ .  
i=l j=l 

PROPOSITION C. 

= E(exp[ivk~'Y,.j(e)])E(exp[ivk~f',.j(e)]) 
j=l i=1 

and we know that the second factor converges as n --~ ~, uniformly for j v 1 =< V, 

to exp[qJ~(v)], the characteristic function of the infinitely divisible law deter- 

mined by OE, %@o)= 0, and o-2~ = 0. Furthermore, if exp[qJo(v)] is the charac- 

teristic function of the infinitely divisible law determined in the form (2.5) by 0,  

yo(e0) = 0, and o~ = 0, then for I v I_- < V 

( ,.,~=~, uZdO(u) (e ~"~ <=(V2/2) o Ir  o<,or~,~ < 

which approaches zero as e--*0. Since {Z.,j} satisfies condition (iii), we have 

var[; ' y X 

- exp [ - (v2o':/2) + So(v)] 

which approaches zero, uniformly for I v I --< V, as n --~ ~ and then e --~ 0 through 

positive values such that - e  are continuity points of O. The limit is the 

characteristic function of the infinitely divisible law determined in the form (2.5) 

by O, ~o(eo)= 0, and o -2. 
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COROLLARY. 

E exp iv ~ Y..~(e)+ ~. IX.,j(e,,)-A. - exp[~vy(e . ) - (v  o.-/2)+~o(v)] 
i=l i=1 

j=I 

which approaches zero, uniformly for I v I --< V, as n ~ ~ and then e ~ 0 through 

positive values such that +-- e are continuity points of O. In this case, the limit is 

the characteristic function of the infinitely divisible law determined in the form 

(2.5) by O, y(eo), and o -2. 

PROPOSITION D. If t5 and (~ are characteristic functions, let 

(6.3) d(F, G ) =  ~ 2-" sup I F(v ) -  (~(v)I, 
m = l  Ioj<=rn 

so that convergence in the metric d is equivalent to uniform convergence 

on compact subsets of the real line and hence to convergence in distribu- 

tion. Thus if c o > 0  is arbitrary, F'.., is the characteristic function of 

E~t=] ) Y..i(e)+ E~t=", ) t~..j(eo)- A., and (~ is the characteristic function of the limit 

distribution o. --.i=~ .... j - A., we know from Corollary 3 to Proposition A that 

(6.4) lim l imsup d(/6.,,, G)  = 0. 

Let S(n,e)  = E~="~)E([Z,.j(e)] 2) and V(n,e)  = var[Z~q)Z,,.j(e)]. Then by 

Lemma 6 and Lemma 16 we see that S(n, e) and V(n, e) are bounded for n = 1 

and 0 < e < co. Let {n (m)} be a strictly increasing sequence of positive integers 

and define 

(6.5) S ' (e)  = l imsup S(n(m), e), S '= l imsup S'(e).  

Let {e,} be a sequence, decreasing to zero as r--.o0, such that 

(6.6) !in2~ S'(e,) = S'. 

Now choose {m (r)} to be a strictly increasing sequence of positive integers such 

that 

(6.7) ! imS(n[m(r)] ,e , )=S'  and !imd(/~.t,.,,,l..,,(~)=0. 
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By passing to a subsequence of (n [m (r)], e,) if necessary, we can assume that the 

bounded sequence {V(n[m(r ) ] ,  e,)} converges, say 

(6.8) !ira V (n[m(r ) l ,  e,) = o "2 >= O. 

Since 

F.,, (v) = e x p [ -  v2V(n,  e)12] 

x E  exp iv ~ [ f ' . . s ( e ) + v . . j ( e ) ] +  ~ . t x . . j ( e o ) - A .  , 
/=l /=I 

we see that, for every v, the characteristic function of 

k(nlm(r)l) k(n[m(r)l) 

~. [Y.l,.,ol,,(e,)+t'.t,.,ol,s(e,)]+ ~ /x.t,.,ol4(e,,)-A.t,-,,,l 
/~l i=l 

converges as r ~ or to the continuous function (~(v)exp (u2tr2/2). Now { ~'.t,.<,)J,s} 
are independent for each r and satisfy uan, since 

(6.9) P({I Y,,t,,,o.)l.J(e,) [ > e })= P({ I Z,,t,,,o.)l.j I > e }) 

for r sufficiently large that e, < e. Consequently, by the classical theorem for 
within-row independent uan random variables, we see that (~(v)exp (v2tr2/2) 

must be the characteristic function of an infinitely divisible law, determined by 

Q, T, and trY,, say. Furthermore, we know that, for every u > 0 that is a continuity 
point of Q, 

k(n~(r)l) 
- O(u )  = lim /__, P({Y.t , . t , ) l , j(er)>u}) 

r ~  j ~ 1 

k(.~(,)}) 

= lim P({Z.t~,)j.j > u}), 

that, for every u < 0 that is a continuity point of Q, 

O(u )  = !im k,.~(,),) k(.~(,),) P({ 9.tm(,)j,j(e,) < u})= lim P({Z.I,.(,)I.j < u}) 
j=l r ~  )=1 

and that 

(6.10) 

k(n~(r)]) 
o"I = lira l imsup var [ IT".t,.(,)ri(e,)I({ I ~'.[m(,)j,j(e,)I--< e})] 

t~0  1=1 

k(n~C�9 

= lim lim sup ~ var [Z.t,,,(.)l,iI({e, < I Z.[,.(,)l., I -  < e})]. 
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However,  for 0 < 6r < E', 

v a r  [Zn[m<r)],jl({Er < I Zn[m(r) l , j l~  ~'})]  "~ E([2n[m(r)],j(l~ )] 2 -- [2n[m(r)] , j (Er)]2),  

so that 

0--  cr~ ~ l imsup l imsup [S(n[m(r)], e ) -  S(n[m(r)], e,)] 

= limsu p [l imsup S(ntm(r) ] ,e)-  S'] 

=< lim sup [S'(e ) - S'] = S' - S' = O. 

Consequently,  G(v)exp(v~-o'2/2) is the characteristic function of the infinitely 

divisible law determined by Q, 3", and 0-~,=0, which shows that (~ is the 

characteristic function of the infinitely divisible law determined by Q, 3', and 0-2. 

Hence these quantities are determined uniquely by E~. 

From now on, we shall assume that eo > 0 is chosen so that • e,, are continuity 

points of Q. Thus what we have shown so far is that for every subsequence 

{n(rn)} of {n}, there exists a sequence {e~} of positive numbers converging to 

zero as r ~ ~ and a further subsequence {n [m (r)]} such that {X~l,.(nj.j} satisfies 

condition (i) for this O, 

!im V(n[m(r)], e,) = 0 -2, 

and 

k(nlm(r)l) k(mln(r)]) 
/=] j=l ~,l,,(nl.s (e,,) - A.l.,(r)l 

converges in distribution as r ~ oo to the infinitely divisible law determined by Q, 

3", and o-~ = 0. However,  since • e0 are continuity points of Q, we also know 

from the classical case that 

[ k(n~(r) l) f k(n[m(r)]) 
7(eo) = !im i=l I! '?.(.~.,u (~,)r -~ ~o~ "Y"l"(')lj(e')dP + E u.t,,,(,)l.i(e,) ~ j=l 

k(n~(r)]) 
+ J=~ /~.[,.(,)l.s(eo)- A.[,.(,))] 

= l i m  [ k(-t,-(,)U 
r ~  j=l 

= lira [ r ~  

u,(.~(.)).j (eo) + 
k(n[rn(r)]) ] 

j=l 

k(M[m(r)]) 

j= l  
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making use of Lemma 9. At this point we can see that {Xo,s} must satisfy 

conditions (i) and (ii) of the main theorem, with (ii) holding for every e,, > 0 such 

that +--e0 are continuity points of O. Furthermore, applying the corollary to 

Proposition B, we now see that if 0 < e =< e0 with --- e continuity points of Q, 

then E ~  ) [ I?,~j (e) + t,.. s (e)] + E ~  )/x., s (eo) - A., which has characteristic function 

12I.,.(v ) = P.,.(v )exp [v2V(n, e)/2], 

must converge in distribution as n ~ ~ to the infinitely divisible law determined 

by Q~, y(eo), and ~r~. = 0. This law has characteristic function 

exp [ ivy( eo) + ~O~ (v)]--~ exp [ ivy( eo) + ~l,o( V )] 

as e ~ 0. We also know that O(v)  = exp [ivy@o)+ Oo(V)] e x p [ -  v~o'"/2] and, by 

(6.3) and (6.4), 

(6.11) lim lim sup sup I ~ . , ( v ) -  d (v ) l  = o 
e ~ O  ~ l v I < V  ' 

for every V > 0. Suppose that V(n, e) <= B for n = 1 and 0 < e =< eo. Then we 

must have ~r2_- < B as well. Hence, by the mean value theorem, 

(v~/2) 1 V(n, e ) -  o'2 l < exp (v2B/2) lexp [ -  v ~ V(n, e )/21 - exp ( -  v ~o-2/2) I 

=< exp (v 2B/2){ i F..~ (v) - (~ (v)l + l exp [ivy(eo) + Oo(v)] -/2/.,E (v)I }/]/2/.,~ (v)]. 

Since 

and 

lim I H-,: (v)l = l exp [G (v)l I > 0 
r t ~  

we see that 

(6.12) 

lim l exp [G (v ) l ]=  l exp [@o(v)]l> O, 
~ 0  

!im l imsup (v~/2) I V(n, e ) -  o~1 = O, 

when e ~ 0  through positive values such that - e are continuity points of Q. 

Therefore, by Lemma 17, {X,.j} satisfies condition (i/i) with this value of tr 2. 

7. Corollaries of the main theorem 

We first consider the case of finite variance, as in Theorem 1.2 (but mistakenly 

labeled 2.1 on page 175) of Bergstr6m [2]. 
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COROLLARY 1 (Extension of Lindeberg 's  Theorem).  Let {X,.i} be c~-mixing 

with coefficient satisfying Ibragimov ' s condition, E(X,.j) = 0, ] = 1 , 2 , . . . ,  k(n  ), 

and 

k(n) 

var (X.,j) -- 1 
i = 1  

v~(") X. j  converges in for n = 1 , 2 , 3 , . . . .  Then {X.,j} satisfies uan, sin, and ._.j_, , 
distribution as n ~ oo to the N(O, or 2) law provided that 

(7.1, !im var ( i ~ )  X,,,) = o -2 

and Lindeberg's condition is satisfied; that is, for every e > 0, 

k(n) 

(7.2) lim ~ E([ .~.a(e)]  2) = 0. 
n ~  j=l 

PROOF. First note that P({] X. j  I > e }) _-< e -2E ([X.,j (e)]2) _< e-2 var (X.,j) and 

var ()(.,j (e))  -< E ([..~.j (e)]2) __< var (X.,j). Consequent ly ,  {X.,j } satisfies stb and svb 

in any event.  Now if Lindeberg 's  condit ion is satisfied, we see that condit ion (i) 

of the main theorem is satisfied for Q - 0 on ( - ~,  0) U (0, oo) which implies uan 

and sin. Fur thermore ,  since E(X. , j )= 0, we have 

t E(Xn. j (e ) )  I = I E(..~., j(e)) I ~ e-l~'([~l~n.j(e)]2), 

so that for every e o > 0 ,  

Finally, since 

k~n) 

lim ~ ~.,j(eo) = 0. 
n ~  j = l  

k (n )  

lim ~ var (..k'.,, (e )) = 0 
n ~  j = l  

for every e > 0, L e m m a  16 shows that 

( 
k(i__~l) . \ 

!im var X. . i (e ) )=O 

for every e > 0. Thus we see that for every e > 0, 

(k,~ )) 
(7.3) l imvar  ~ )f..j(e = 0 "2. 

n ~  j = l  

Consequent ly ,  {X.,j} satisfies the preliminary condit ions and conditions (i), (ii), 
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and (iii) of the main theorem, with A. = 0 and y(e0) = 0 in (ii), which proves that 

as n--~o0 Z~=(q~X.,j converges in distribution to the N(0, cr 2) law. 
Notice that condition (i) being satisfied for Q =- 0 is equivalent to the sums of 

the tail probabilities being asymptotically negligible, stn; that is, 

k(n) 

lim Z P({] X.,j I> e } ) = 0  
n ~  j = l  

for every e > 0. Under stn, we observe that for 4)-mixing {X.,i} with coefficient 

satisfying Ibragimov's condition, (7.3) is equivalent to condition (iii) of the main 

theorem. For if condition (iii) is satisfied we know that {var(E~Lq~.~.j (e))} is a 
var[Ej=, X. j (e )  E~=, J~..j(e')] ap- bounded sequence for each e >0 .  Since k(.) - _ k(.) 

proaches zero as n ~ ~, by (4.4) and the fact that with O -= 0 

k(n) k(n) 

lim Z var (J~.j (e) - )(.,, (e ')) =< !i m Z E ([3~.,, (e) - ..~.., (e')12) = 0, 
n ~  j ~ l  ~ j = l  

we see that 

l imsupvar  ~J~, , j (e  and l iminfvar 2 J ( , . , ( e  
n ~  j =1  n ~ =  j = l  

do not depend upon e. Consequently, condition (iii) implies (7.3) in this case. 
Thus for convergence to the N(0,(T:) distribution we can simplify the main 
theorem as follows (see theorem 6.5 of Bergstr6m [1]). 

COROLLARY 2 (Normal convergence). Let {X.,j} be ok-mixing with coefficient 

fulfilling lbragimov's condition and suppose {X..j} satisfies stn and svb. Then 
E~L] ) X . j -  A .  converges in distribution to the N(O, o "2) law if and only if 

k( . )  

(7.4) ~ tx..i(e ) -  A .  ---~O as n ---~o~ 
j=l 

for some (and hence all) e > 0 and (7.3), namely 

var ( i~)  37~.j (e))  ---~ o "2 a s n - - - ~ ,  

for some (and hence all) e > O. 

For infinitely divisible laws with 2 =  0, for example the non-normal stable 

laws, we can reduce the question of convergence in certain cases to that of the 

classical within-row independent situation. One possibility is the following. 

COROLLARY 3. Let {X.,j} be ok-mixing with coefficient satisfying Ibragimov' s 
condition. Furthermore, suppose {X.,j} satisfies uan and sin. Let { Y.,j} be random 
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variables, independent for each n, such that Y,.j has the same distribution as X,,j. 
x~k(n) Suppose that as n - - ~ ,  ~..~=1 Y n , j - A .  converges in distribution to the infinitely 

divisible law determined in the form (2.4) by Q, 3', and o "z=O. Then 
~k (n )  ~tr j=~ .... j - A .  converges in distribution as n - - - ~  to this same law. 

PROOF. We can see immediately that {X..j} must satisfy (i) and (ii) of the main 

theorem for the same Q and y(eo) as { Y.,j}, using the classical uRn independent 

case results. In particular, this shows {X..j} satisfies stb. Also, we know that 
k(n) 

(7.5) lim limsup ~ var (X..j(e)) = 0 
e~0 j=l 

when e ~ 0 through positive values such that - e  are continuity points of Q. 

This also shows that {X,.j} satisfies svb, so all preliminary conditions are verified. 

Finally, using (4.4) to extend Lemma 16 to include iterated limits, we see that 

(7.6) lira l imsup var 2 (2~j (e = O, 
~ 0  i=1 

again when e --* 0 through positive values such that - e are continuity points of 

Q. Hence {X,,j} satisfies (iii) for 2 =  0. 
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